用于检测临床试验中不良事件漏报的开源 R 软件包:IMPALA(Inter coMPany quALity Analytics)联盟的实施与验证。

IF 2 4区 医学 Q4 MEDICAL INFORMATICS
Björn Koneswarakantha, Ronojit Adyanthaya, Jennifer Emerson, Frederik Collin, Annett Keller, Michaela Mattheus, Ioannis Spyroglou, Sandra Donevska, Timothé Ménard
{"title":"用于检测临床试验中不良事件漏报的开源 R 软件包:IMPALA(Inter coMPany quALity Analytics)联盟的实施与验证。","authors":"Björn Koneswarakantha, Ronojit Adyanthaya, Jennifer Emerson, Frederik Collin, Annett Keller, Michaela Mattheus, Ioannis Spyroglou, Sandra Donevska, Timothé Ménard","doi":"10.1007/s43441-024-00631-8","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and timely reporting of adverse events (AEs) in clinical trials is crucial to ensuring data integrity and patient safety. However, AE under-reporting remains a challenge, often highlighted in Good Clinical Practice (GCP) audits and inspections. Traditional detection methods, such as on-site investigator audits via manual source data verification (SDV), have limitations. Addressing this, the open-source R package {simaerep} was developed to facilitate rapid, comprehensive, and near-real-time detection of AE under-reporting at each clinical trial site. This package leverages patient-level AE and visit data for its analyses. To validate its efficacy, three member companies from the Inter coMPany quALity Analytics (IMPALA) consortium independently assessed the package. Results showed that {simaerep} consistently and effectively identified AE under-reporting across all three companies, particularly when there were significant differences in AE rates between compliant and non-compliant sites. Furthermore, {simaerep}'s detection rates surpassed heuristic methods, and it identified 50% of all detectable sites as early as 25% into the designated study duration. The open-source package can be embedded into audits to enable fast, holistic, and repeatable quality oversight of clinical trials.</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":" ","pages":"591-599"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169048/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Open-Source R Package for Detection of Adverse Events Under-Reporting in Clinical Trials: Implementation and Validation by the IMPALA (Inter coMPany quALity Analytics) Consortium.\",\"authors\":\"Björn Koneswarakantha, Ronojit Adyanthaya, Jennifer Emerson, Frederik Collin, Annett Keller, Michaela Mattheus, Ioannis Spyroglou, Sandra Donevska, Timothé Ménard\",\"doi\":\"10.1007/s43441-024-00631-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and timely reporting of adverse events (AEs) in clinical trials is crucial to ensuring data integrity and patient safety. However, AE under-reporting remains a challenge, often highlighted in Good Clinical Practice (GCP) audits and inspections. Traditional detection methods, such as on-site investigator audits via manual source data verification (SDV), have limitations. Addressing this, the open-source R package {simaerep} was developed to facilitate rapid, comprehensive, and near-real-time detection of AE under-reporting at each clinical trial site. This package leverages patient-level AE and visit data for its analyses. To validate its efficacy, three member companies from the Inter coMPany quALity Analytics (IMPALA) consortium independently assessed the package. Results showed that {simaerep} consistently and effectively identified AE under-reporting across all three companies, particularly when there were significant differences in AE rates between compliant and non-compliant sites. Furthermore, {simaerep}'s detection rates surpassed heuristic methods, and it identified 50% of all detectable sites as early as 25% into the designated study duration. The open-source package can be embedded into audits to enable fast, holistic, and repeatable quality oversight of clinical trials.</p>\",\"PeriodicalId\":23084,\"journal\":{\"name\":\"Therapeutic innovation & regulatory science\",\"volume\":\" \",\"pages\":\"591-599\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic innovation & regulatory science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43441-024-00631-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-024-00631-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

准确及时地报告临床试验中的不良事件 (AE) 对于确保数据完整性和患者安全至关重要。然而,AE 报告不足仍是一项挑战,经常在良好临床实践(GCP)审核和检查中被强调。传统的检测方法存在局限性,例如通过人工源数据验证(SDV)对研究者进行现场审核。为了解决这个问题,我们开发了开源 R 软件包 {simaerep},以方便快速、全面、近乎实时地检测每个临床试验机构的 AE 少报情况。该软件包利用患者水平的 AE 和访视数据进行分析。为了验证它的有效性,Inter coMPany quALity Analytics (IMPALA) 联盟的三家成员公司对该软件包进行了独立评估。结果显示,{simaerep}能持续有效地识别三家公司的AE漏报情况,尤其是当合规和不合规医疗机构之间的AE发生率存在显著差异时。此外,{simaerep}的检测率也超过了启发式方法,它能在指定研究持续时间的25%时就识别出50%的检测点。该开源软件包可嵌入审计中,实现快速、全面、可重复的临床试验质量监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Open-Source R Package for Detection of Adverse Events Under-Reporting in Clinical Trials: Implementation and Validation by the IMPALA (Inter coMPany quALity Analytics) Consortium.

Accurate and timely reporting of adverse events (AEs) in clinical trials is crucial to ensuring data integrity and patient safety. However, AE under-reporting remains a challenge, often highlighted in Good Clinical Practice (GCP) audits and inspections. Traditional detection methods, such as on-site investigator audits via manual source data verification (SDV), have limitations. Addressing this, the open-source R package {simaerep} was developed to facilitate rapid, comprehensive, and near-real-time detection of AE under-reporting at each clinical trial site. This package leverages patient-level AE and visit data for its analyses. To validate its efficacy, three member companies from the Inter coMPany quALity Analytics (IMPALA) consortium independently assessed the package. Results showed that {simaerep} consistently and effectively identified AE under-reporting across all three companies, particularly when there were significant differences in AE rates between compliant and non-compliant sites. Furthermore, {simaerep}'s detection rates surpassed heuristic methods, and it identified 50% of all detectable sites as early as 25% into the designated study duration. The open-source package can be embedded into audits to enable fast, holistic, and repeatable quality oversight of clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Therapeutic innovation & regulatory science
Therapeutic innovation & regulatory science MEDICAL INFORMATICS-PHARMACOLOGY & PHARMACY
CiteScore
3.40
自引率
13.30%
发文量
127
期刊介绍: Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health. The focus areas of the journal are as follows: Biostatistics Clinical Trials Product Development and Innovation Global Perspectives Policy Regulatory Science Product Safety Special Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信