{"title":"干扰素-β的有效抑制浓度与SARS-CoV-2变体的感染性和复制能力有关","authors":"Janmejay Singh, Anbalagan Anantharaj, Parveen Kumar, Rajesh Pandey, Anil Kumar Pandey, Guruprasad R Medigeshi","doi":"10.1089/jir.2024.0016","DOIUrl":null,"url":null,"abstract":"<p><p>India saw a spike in COVID-19 cases in early 2023, and this wave of infection was attributed to XBB sublineages of SARS-CoV-2 Omicron variant. The impact of XBB wave was significantly shorter with low burden of severe cases or hospitalization as compared with previous SARS-CoV-2 variants of concern. Although a combination of old and new mutations in the spike region of XBB.1.16 variant led to a drastic reduction in the ability of antibodies from prior immunity to neutralize this virus, additional nonspike mutations suggested a possible change in its ability to suppress innate immune responses. In this study, we tested the sensitivity of Delta, BA.2.75, and XBB.1.16 variants to interferon-β (IFN-β) treatment and found that XBB.1.16 variant was most sensitive to IFN-β. We next tested the ability of serum antibodies from healthy individuals to neutralize XBB.1.16. We showed that most of the individuals with hybrid immunity maintained a low but significant level of neutralizing antibodies to XBB.1.16 variant. Therefore, our observations indicated that both hybrid immunity because of natural infection and enhanced sensitivity to IFNs may have contributed to the low impact of XBB.1.16 infections in India.</p>","PeriodicalId":16261,"journal":{"name":"Journal of Interferon and Cytokine Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effective Inhibitory Concentration of Interferon-β Correlates with Infectivity and Replication Fitness of SARS-CoV-2 Variants.\",\"authors\":\"Janmejay Singh, Anbalagan Anantharaj, Parveen Kumar, Rajesh Pandey, Anil Kumar Pandey, Guruprasad R Medigeshi\",\"doi\":\"10.1089/jir.2024.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>India saw a spike in COVID-19 cases in early 2023, and this wave of infection was attributed to XBB sublineages of SARS-CoV-2 Omicron variant. The impact of XBB wave was significantly shorter with low burden of severe cases or hospitalization as compared with previous SARS-CoV-2 variants of concern. Although a combination of old and new mutations in the spike region of XBB.1.16 variant led to a drastic reduction in the ability of antibodies from prior immunity to neutralize this virus, additional nonspike mutations suggested a possible change in its ability to suppress innate immune responses. In this study, we tested the sensitivity of Delta, BA.2.75, and XBB.1.16 variants to interferon-β (IFN-β) treatment and found that XBB.1.16 variant was most sensitive to IFN-β. We next tested the ability of serum antibodies from healthy individuals to neutralize XBB.1.16. We showed that most of the individuals with hybrid immunity maintained a low but significant level of neutralizing antibodies to XBB.1.16 variant. Therefore, our observations indicated that both hybrid immunity because of natural infection and enhanced sensitivity to IFNs may have contributed to the low impact of XBB.1.16 infections in India.</p>\",\"PeriodicalId\":16261,\"journal\":{\"name\":\"Journal of Interferon and Cytokine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interferon and Cytokine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jir.2024.0016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interferon and Cytokine Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jir.2024.0016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Effective Inhibitory Concentration of Interferon-β Correlates with Infectivity and Replication Fitness of SARS-CoV-2 Variants.
India saw a spike in COVID-19 cases in early 2023, and this wave of infection was attributed to XBB sublineages of SARS-CoV-2 Omicron variant. The impact of XBB wave was significantly shorter with low burden of severe cases or hospitalization as compared with previous SARS-CoV-2 variants of concern. Although a combination of old and new mutations in the spike region of XBB.1.16 variant led to a drastic reduction in the ability of antibodies from prior immunity to neutralize this virus, additional nonspike mutations suggested a possible change in its ability to suppress innate immune responses. In this study, we tested the sensitivity of Delta, BA.2.75, and XBB.1.16 variants to interferon-β (IFN-β) treatment and found that XBB.1.16 variant was most sensitive to IFN-β. We next tested the ability of serum antibodies from healthy individuals to neutralize XBB.1.16. We showed that most of the individuals with hybrid immunity maintained a low but significant level of neutralizing antibodies to XBB.1.16 variant. Therefore, our observations indicated that both hybrid immunity because of natural infection and enhanced sensitivity to IFNs may have contributed to the low impact of XBB.1.16 infections in India.
期刊介绍:
Journal of Interferon & Cytokine Research (JICR) provides the latest groundbreaking research on all aspects of IFNs and cytokines. The Journal delivers current findings on emerging topics in this niche community, including the role of IFNs in the therapy of diseases such as multiple sclerosis, the understanding of the third class of IFNs, and the identification and function of IFN-inducible genes.