REV7-p53 相互作用抑制了 ATM 介导的 DNA 损伤信号传导。

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Cell Cycle Pub Date : 2024-02-01 Epub Date: 2024-04-01 DOI:10.1080/15384101.2024.2333227
Megan Biller, Sara Kabir, Chkylle Boado, Sarah Nipper, Alexandra Saffa, Ariella Tal, Sydney Allen, Hiroyuki Sasanuma, Didier Dréau, Cyrus Vaziri, Junya Tomida
{"title":"REV7-p53 相互作用抑制了 ATM 介导的 DNA 损伤信号传导。","authors":"Megan Biller, Sara Kabir, Chkylle Boado, Sarah Nipper, Alexandra Saffa, Ariella Tal, Sydney Allen, Hiroyuki Sasanuma, Didier Dréau, Cyrus Vaziri, Junya Tomida","doi":"10.1080/15384101.2024.2333227","DOIUrl":null,"url":null,"abstract":"<p><p>REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174130/pdf/","citationCount":"0","resultStr":"{\"title\":\"REV7-p53 interaction inhibits ATM-mediated DNA damage signaling.\",\"authors\":\"Megan Biller, Sara Kabir, Chkylle Boado, Sarah Nipper, Alexandra Saffa, Ariella Tal, Sydney Allen, Hiroyuki Sasanuma, Didier Dréau, Cyrus Vaziri, Junya Tomida\",\"doi\":\"10.1080/15384101.2024.2333227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.</p>\",\"PeriodicalId\":9686,\"journal\":{\"name\":\"Cell Cycle\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Cycle\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15384101.2024.2333227\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2024.2333227","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

REV7是一种丰富的多功能蛋白质,是已知的细胞周期调控因子,也是几种关键DNA修复途径(包括跨裂隙合成(TLS)、范可尼贫血症(FA)途径和DNA双链断裂(DSB)修复途径选择)中的一个因子。迄今为止,尚未研究过 REV7 在 DNA 损伤应答(DDR)信号通路中的直接作用。在这里,我们描述了 REV7 在 DSB 诱导的 p53 信号传导中的新功能。我们发现,REV7 可直接与 p53 结合,阻断依赖于 ATM 的 p53 Ser15 磷酸化。我们还报告了 REV7 参与了 p53 的不稳定性。这些发现证实了 REV7 参与了基本的细胞周期和 DNA 修复途径。此外,它们还强调了REV7是整合多种决定生存能力和基因组稳定性的过程的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REV7-p53 interaction inhibits ATM-mediated DNA damage signaling.

REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信