CD8靶向IL2通过激活功能失调的T细胞池,释放人体癌症组织中的肿瘤特异性免疫力。

IF 29.7 1区 医学 Q1 ONCOLOGY
Paulien Kaptein, Nadine Slingerland, Christina Metoikidou, Felix Prinz, Simone Brokamp, Mercedes Machuca-Ostos, Guido de Roo, Ton N M Schumacher, Yik A Yeung, Kelly D Moynihan, Ivana M Djuretic, Daniela S Thommen
{"title":"CD8靶向IL2通过激活功能失调的T细胞池,释放人体癌症组织中的肿瘤特异性免疫力。","authors":"Paulien Kaptein, Nadine Slingerland, Christina Metoikidou, Felix Prinz, Simone Brokamp, Mercedes Machuca-Ostos, Guido de Roo, Ton N M Schumacher, Yik A Yeung, Kelly D Moynihan, Ivana M Djuretic, Daniela S Thommen","doi":"10.1158/2159-8290.CD-23-1263","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1226-1251"},"PeriodicalIF":29.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215409/pdf/","citationCount":"0","resultStr":"{\"title\":\"CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool.\",\"authors\":\"Paulien Kaptein, Nadine Slingerland, Christina Metoikidou, Felix Prinz, Simone Brokamp, Mercedes Machuca-Ostos, Guido de Roo, Ton N M Schumacher, Yik A Yeung, Kelly D Moynihan, Ivana M Djuretic, Daniela S Thommen\",\"doi\":\"10.1158/2159-8290.CD-23-1263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"1226-1251\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-23-1263\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-1263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤特异性 CD8+ T 细胞是抗肿瘤免疫的关键效应器,但在肿瘤微环境中往往功能失调。免疫检查点阻断疗法可以恢复部分患者的抗肿瘤T细胞功能,但大多数患者对这种疗法没有反应,尽管肿瘤中往往有T细胞浸润。我们在此研究了一种 CD8 靶向 IL2 融合分子(CD8-IL2),以选择性地重新激活患者肿瘤片段中的瘤内 CD8+ T 细胞。用CD8-IL2治疗可广泛武装瘤内CD8+ T细胞,增强其效应能力,从而特异性地使功能失调的T细胞池重获活力,激发强大的免疫活性。值得注意的是,CD8-IL2 能使功能失调的 T 细胞恢复介导效应活性,这取决于同时进行的抗原识别,而且在数量和质量上都优于 PD-1 阻断疗法。最后,CD8-IL2能够在抗PD-1的肿瘤中重新激活T细胞的功能,突出了其作为癌症患者新型治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool.

Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信