功能医学数据的领域适应性和通用性:脑数据系统调查

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Gita Sarafraz, Armin Behnamnia, Mehran Hosseinzadeh, Ali Balapour, Amin Meghrazi, Hamid R. Rabiee
{"title":"功能医学数据的领域适应性和通用性:脑数据系统调查","authors":"Gita Sarafraz, Armin Behnamnia, Mehran Hosseinzadeh, Ali Balapour, Amin Meghrazi, Hamid R. Rabiee","doi":"10.1145/3654664","DOIUrl":null,"url":null,"abstract":"<p>In spite of the excellent capabilities of machine learning algorithms, their performance deteriorates when the distribution of test data differs from the distribution of training data. In medical data research, this problem is exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently, achieving domain generalizations (DG) and domain adaptations (DA) under distribution shifts is an essential step in the analysis of medical data. As the first systematic review of DG and DA on functional brain signals, the paper discusses and categorizes various methods, tasks, and datasets in this field. Moreover, it discusses relevant directions for future research.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Adaptation and Generalization of Functional Medical Data: A Systematic Survey of Brain Data\",\"authors\":\"Gita Sarafraz, Armin Behnamnia, Mehran Hosseinzadeh, Ali Balapour, Amin Meghrazi, Hamid R. Rabiee\",\"doi\":\"10.1145/3654664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In spite of the excellent capabilities of machine learning algorithms, their performance deteriorates when the distribution of test data differs from the distribution of training data. In medical data research, this problem is exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently, achieving domain generalizations (DG) and domain adaptations (DA) under distribution shifts is an essential step in the analysis of medical data. As the first systematic review of DG and DA on functional brain signals, the paper discusses and categorizes various methods, tasks, and datasets in this field. Moreover, it discusses relevant directions for future research.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3654664\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654664","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管机器学习算法性能卓越,但当测试数据的分布与训练数据的分布不同时,其性能就会下降。在医学数据研究中,这一问题因其与人类健康的联系、昂贵的设备和精细的设置而变得更加严重。因此,在分布变化的情况下实现领域泛化(DG)和领域适应(DA)是医学数据分析的重要步骤。作为第一篇关于脑功能信号领域泛化和领域适应的系统性综述,本文对该领域的各种方法、任务和数据集进行了讨论和分类。此外,它还讨论了未来研究的相关方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Adaptation and Generalization of Functional Medical Data: A Systematic Survey of Brain Data

In spite of the excellent capabilities of machine learning algorithms, their performance deteriorates when the distribution of test data differs from the distribution of training data. In medical data research, this problem is exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently, achieving domain generalizations (DG) and domain adaptations (DA) under distribution shifts is an essential step in the analysis of medical data. As the first systematic review of DG and DA on functional brain signals, the paper discusses and categorizes various methods, tasks, and datasets in this field. Moreover, it discusses relevant directions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信