Susanna E. Venn, James Camac, Samantha P. Grover, John W. Morgan
{"title":"澳大利亚东南部山顶的高山灌木落叶分解情况","authors":"Susanna E. Venn, James Camac, Samantha P. Grover, John W. Morgan","doi":"10.1111/aec.13511","DOIUrl":null,"url":null,"abstract":"<p>Climate warming has been linked to shrub expansion in alpine regions and the decomposition of shrub leaf litter and subsequent release of nutrients has been proposed as a mechanism to facilitate shrub growth. We quantified the rate of alpine shrub leaf litter decomposition (measured as mass loss) over the course of a year in four locally occurring alpine shrub species that grow across four alpine summits. We measured a range of environmental attributes at the study sites, and via a standard litter bag approach, we evaluated the effects of site elevation, the depth of litter bag deployment, the removal time, the species-specific leaf area (SLA) and the accumulated growing degree days at each site on the total per cent and rate of litter decomposition (as mass loss). The higher elevation sites were cooler with more snow days than the lower sites. Soil moisture was higher early in the snow-free season at the higher elevation sites. Linear mixed effect models indicated no significant effects of elevation on total and rate of litter decomposition, but there were significant positive effects of deployment depth and removal time and a significant negative effect of species SLA. There were significant negative relationships between the rate of decomposition and growing degree days, as decomposition slows through time. The modelled mean rates of shrub litter decomposition for each species indicated that there would be more and faster decomposition if winter and early spring conditions were to persist for a whole year, compared with the modelled rates of average annual conditions persisting for a whole year. Our results indicate that Australian alpine shrub litter decomposes readily, with the highest rates of decomposition occurring soon after deployment, which in this study was after a snowy winter at the start of the growing season in spring.</p>","PeriodicalId":8663,"journal":{"name":"Austral Ecology","volume":"49 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aec.13511","citationCount":"0","resultStr":"{\"title\":\"Alpine shrub leaf litter decomposition across mountain summits in south-eastern Australia\",\"authors\":\"Susanna E. Venn, James Camac, Samantha P. Grover, John W. Morgan\",\"doi\":\"10.1111/aec.13511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate warming has been linked to shrub expansion in alpine regions and the decomposition of shrub leaf litter and subsequent release of nutrients has been proposed as a mechanism to facilitate shrub growth. We quantified the rate of alpine shrub leaf litter decomposition (measured as mass loss) over the course of a year in four locally occurring alpine shrub species that grow across four alpine summits. We measured a range of environmental attributes at the study sites, and via a standard litter bag approach, we evaluated the effects of site elevation, the depth of litter bag deployment, the removal time, the species-specific leaf area (SLA) and the accumulated growing degree days at each site on the total per cent and rate of litter decomposition (as mass loss). The higher elevation sites were cooler with more snow days than the lower sites. Soil moisture was higher early in the snow-free season at the higher elevation sites. Linear mixed effect models indicated no significant effects of elevation on total and rate of litter decomposition, but there were significant positive effects of deployment depth and removal time and a significant negative effect of species SLA. There were significant negative relationships between the rate of decomposition and growing degree days, as decomposition slows through time. The modelled mean rates of shrub litter decomposition for each species indicated that there would be more and faster decomposition if winter and early spring conditions were to persist for a whole year, compared with the modelled rates of average annual conditions persisting for a whole year. Our results indicate that Australian alpine shrub litter decomposes readily, with the highest rates of decomposition occurring soon after deployment, which in this study was after a snowy winter at the start of the growing season in spring.</p>\",\"PeriodicalId\":8663,\"journal\":{\"name\":\"Austral Ecology\",\"volume\":\"49 4\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aec.13511\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aec.13511\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aec.13511","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Alpine shrub leaf litter decomposition across mountain summits in south-eastern Australia
Climate warming has been linked to shrub expansion in alpine regions and the decomposition of shrub leaf litter and subsequent release of nutrients has been proposed as a mechanism to facilitate shrub growth. We quantified the rate of alpine shrub leaf litter decomposition (measured as mass loss) over the course of a year in four locally occurring alpine shrub species that grow across four alpine summits. We measured a range of environmental attributes at the study sites, and via a standard litter bag approach, we evaluated the effects of site elevation, the depth of litter bag deployment, the removal time, the species-specific leaf area (SLA) and the accumulated growing degree days at each site on the total per cent and rate of litter decomposition (as mass loss). The higher elevation sites were cooler with more snow days than the lower sites. Soil moisture was higher early in the snow-free season at the higher elevation sites. Linear mixed effect models indicated no significant effects of elevation on total and rate of litter decomposition, but there were significant positive effects of deployment depth and removal time and a significant negative effect of species SLA. There were significant negative relationships between the rate of decomposition and growing degree days, as decomposition slows through time. The modelled mean rates of shrub litter decomposition for each species indicated that there would be more and faster decomposition if winter and early spring conditions were to persist for a whole year, compared with the modelled rates of average annual conditions persisting for a whole year. Our results indicate that Australian alpine shrub litter decomposes readily, with the highest rates of decomposition occurring soon after deployment, which in this study was after a snowy winter at the start of the growing season in spring.
期刊介绍:
Austral Ecology is the premier journal for basic and applied ecology in the Southern Hemisphere. As the official Journal of The Ecological Society of Australia (ESA), Austral Ecology addresses the commonality between ecosystems in Australia and many parts of southern Africa, South America, New Zealand and Oceania. For example many species in the unique biotas of these regions share common Gondwana ancestors. ESA''s aim is to publish innovative research to encourage the sharing of information and experiences that enrich the understanding of the ecology of the Southern Hemisphere.
Austral Ecology involves an editorial board with representatives from Australia, South Africa, New Zealand, Brazil and Argentina. These representatives provide expert opinions, access to qualified reviewers and act as a focus for attracting a wide range of contributions from countries across the region.
Austral Ecology publishes original papers describing experimental, observational or theoretical studies on terrestrial, marine or freshwater systems, which are considered without taxonomic bias. Special thematic issues are published regularly, including symposia on the ecology of estuaries and soft sediment habitats, freshwater systems and coral reef fish.