使用无导数优化算法为移动传感器团队进行分布式实地测绘

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Tony X. Lin, Jia Guo, Said Al-Abri, Fumin Zhang
{"title":"使用无导数优化算法为移动传感器团队进行分布式实地测绘","authors":"Tony X. Lin,&nbsp;Jia Guo,&nbsp;Said Al-Abri,&nbsp;Fumin Zhang","doi":"10.1049/csy2.12111","DOIUrl":null,"url":null,"abstract":"<p>The authors propose a distributed field mapping algorithm that drives a team of robots to explore and learn an unknown scalar field using a Gaussian Process (GP). The authors’ strategy arises by balancing exploration objectives between areas of high error and high variance. As computing high error regions is impossible since the scalar field is unknown, a bio-inspired approach known as Speeding-Up and Slowing-Down is leveraged to track the gradient of the GP error. This approach achieves global field-learning convergence and is shown to be resistant to poor hyperparameter tuning of the GP. This approach is validated in simulations and experiments using 2D wheeled robots and 2D flying miniature autonomous blimps.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12111","citationCount":"0","resultStr":"{\"title\":\"Distributed field mapping for mobile sensor teams using a derivative-free optimisation algorithm\",\"authors\":\"Tony X. Lin,&nbsp;Jia Guo,&nbsp;Said Al-Abri,&nbsp;Fumin Zhang\",\"doi\":\"10.1049/csy2.12111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors propose a distributed field mapping algorithm that drives a team of robots to explore and learn an unknown scalar field using a Gaussian Process (GP). The authors’ strategy arises by balancing exploration objectives between areas of high error and high variance. As computing high error regions is impossible since the scalar field is unknown, a bio-inspired approach known as Speeding-Up and Slowing-Down is leveraged to track the gradient of the GP error. This approach achieves global field-learning convergence and is shown to be resistant to poor hyperparameter tuning of the GP. This approach is validated in simulations and experiments using 2D wheeled robots and 2D flying miniature autonomous blimps.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

作者提出了一种分布式场映射算法,该算法利用高斯过程(GP)驱动一组机器人探索和学习未知标量场。作者的策略是在高误差区域和高方差区域之间平衡探索目标。由于标量场是未知的,计算高误差区域是不可能的,因此利用一种称为 "加速和减速"(Speed-Up and Slowing-Down)的生物启发方法来跟踪 GP 误差的梯度。这种方法实现了全局场学习收敛,并证明可以抵御 GP 超参数调整不当的影响。这种方法在使用二维轮式机器人和二维飞行微型自主飞艇进行的模拟和实验中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed field mapping for mobile sensor teams using a derivative-free optimisation algorithm

Distributed field mapping for mobile sensor teams using a derivative-free optimisation algorithm

The authors propose a distributed field mapping algorithm that drives a team of robots to explore and learn an unknown scalar field using a Gaussian Process (GP). The authors’ strategy arises by balancing exploration objectives between areas of high error and high variance. As computing high error regions is impossible since the scalar field is unknown, a bio-inspired approach known as Speeding-Up and Slowing-Down is leveraged to track the gradient of the GP error. This approach achieves global field-learning convergence and is shown to be resistant to poor hyperparameter tuning of the GP. This approach is validated in simulations and experiments using 2D wheeled robots and 2D flying miniature autonomous blimps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信