不一致的多重检验校正:使用基于族的错误率来推断单个假设的谬误

Q2 Psychology
Mark Rubin
{"title":"不一致的多重检验校正:使用基于族的错误率来推断单个假设的谬误","authors":"Mark Rubin","doi":"10.1016/j.metip.2024.100140","DOIUrl":null,"url":null,"abstract":"<div><p>During multiple testing, researchers often adjust their alpha level to control the familywise error rate for a statistical inference about a joint union alternative hypothesis (e.g., “<em>H</em><sub><em>1,1</em></sub> or <em>H</em><sub><em>1,2</em></sub>”). However, in some cases, they do not make this inference. Instead, they make separate inferences about each of the individual hypotheses that comprise the joint hypothesis (e.g., <em>H</em><sub><em>1,1</em></sub> and <em>H</em><sub><em>1,2</em></sub>). For example, a researcher might use a Bonferroni correction to adjust their alpha level from the conventional level of 0.050 to 0.025 when testing <em>H</em><sub><em>1,1</em></sub> and <em>H</em><sub><em>1,2</em></sub>, find a significant result for <em>H</em><sub><em>1,1</em></sub> (<em>p</em> &lt; 0.025) and not for <em>H</em><sub><em>1,2</em></sub> (<em>p</em> &gt; 0.025), and so claim support for <em>H</em><sub><em>1,1</em></sub> and not for <em>H</em><sub><em>1,2</em></sub>. However, these separate <em>individual</em> inferences do not require an alpha adjustment. Only a statistical inference about the union alternative hypothesis “<em>H</em><sub><em>1,1</em></sub> or <em>H</em><sub><em>1,2</em></sub>” requires an alpha adjustment because it is based on “at least one” significant result among the two tests, and so it refers to the familywise error rate. Hence, an <em>inconsistent correction</em> occurs when a researcher corrects their alpha level during multiple testing but does not make an inference about a union alternative hypothesis. In the present article, I discuss this inconsistent correction problem, including its reduction in statistical power for tests of individual hypotheses and its potential causes vis-à-vis <em>error rate confusions</em> and the <em>alpha adjustment ritual</em>. I also provide three illustrations of inconsistent corrections from recent psychology studies. I conclude that inconsistent corrections represent a symptom of <em>statisticism</em>, and I call for a more nuanced inference-based approach to multiple testing corrections.</p></div>","PeriodicalId":93338,"journal":{"name":"Methods in Psychology (Online)","volume":"10 ","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590260124000067/pdfft?md5=3c67ce757bf603e0af51249904d49c3b&pid=1-s2.0-S2590260124000067-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inconsistent multiple testing corrections: The fallacy of using family-based error rates to make inferences about individual hypotheses\",\"authors\":\"Mark Rubin\",\"doi\":\"10.1016/j.metip.2024.100140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During multiple testing, researchers often adjust their alpha level to control the familywise error rate for a statistical inference about a joint union alternative hypothesis (e.g., “<em>H</em><sub><em>1,1</em></sub> or <em>H</em><sub><em>1,2</em></sub>”). However, in some cases, they do not make this inference. Instead, they make separate inferences about each of the individual hypotheses that comprise the joint hypothesis (e.g., <em>H</em><sub><em>1,1</em></sub> and <em>H</em><sub><em>1,2</em></sub>). For example, a researcher might use a Bonferroni correction to adjust their alpha level from the conventional level of 0.050 to 0.025 when testing <em>H</em><sub><em>1,1</em></sub> and <em>H</em><sub><em>1,2</em></sub>, find a significant result for <em>H</em><sub><em>1,1</em></sub> (<em>p</em> &lt; 0.025) and not for <em>H</em><sub><em>1,2</em></sub> (<em>p</em> &gt; 0.025), and so claim support for <em>H</em><sub><em>1,1</em></sub> and not for <em>H</em><sub><em>1,2</em></sub>. However, these separate <em>individual</em> inferences do not require an alpha adjustment. Only a statistical inference about the union alternative hypothesis “<em>H</em><sub><em>1,1</em></sub> or <em>H</em><sub><em>1,2</em></sub>” requires an alpha adjustment because it is based on “at least one” significant result among the two tests, and so it refers to the familywise error rate. Hence, an <em>inconsistent correction</em> occurs when a researcher corrects their alpha level during multiple testing but does not make an inference about a union alternative hypothesis. In the present article, I discuss this inconsistent correction problem, including its reduction in statistical power for tests of individual hypotheses and its potential causes vis-à-vis <em>error rate confusions</em> and the <em>alpha adjustment ritual</em>. I also provide three illustrations of inconsistent corrections from recent psychology studies. I conclude that inconsistent corrections represent a symptom of <em>statisticism</em>, and I call for a more nuanced inference-based approach to multiple testing corrections.</p></div>\",\"PeriodicalId\":93338,\"journal\":{\"name\":\"Methods in Psychology (Online)\",\"volume\":\"10 \",\"pages\":\"Article 100140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590260124000067/pdfft?md5=3c67ce757bf603e0af51249904d49c3b&pid=1-s2.0-S2590260124000067-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in Psychology (Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590260124000067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Psychology (Online)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590260124000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

摘要

在多重检验过程中,研究人员通常会调整α水平,以控制联合替代假设(如 "H1,1 或 H1,2")统计推断的族内误差率。然而,在某些情况下,他们并不做这样的推断。相反,他们会对构成联合假设的每个单独假设(如 H1,1 和 H1,2)进行单独推断。例如,研究人员在检验 H1,1 和 H1,2 时,可能会使用 Bonferroni 修正法将α水平从传统的 0.050 调整到 0.025,发现 H1,1 的结果显著(p < 0.025),而 H1,2 的结果不显著(p >0.025),因此声称支持 H1,1,不支持 H1,2。然而,这些单独的个别推论并不需要进行阿尔法调整。只有关于联合备择假设 "H1,1 或 H1,2 "的统计推断才需要进行阿尔法调整,因为它是基于两个检验中 "至少一个 "显著的结果,因此它指的是家族误差率。因此,当研究人员在多重检验过程中修正了他们的α水平,但没有对联合替代假设做出推断时,就会出现不一致修正。在本文中,我将讨论这种不一致校正问题,包括它对单个假设检验统计能力的降低,以及它与误差率混淆和阿尔法调整仪式有关的潜在原因。我还提供了三个近期心理学研究中不一致校正的例子。我的结论是,不一致校正是统计主义的一种表现,我呼吁对多重检验校正采用更细致入微的基于推理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inconsistent multiple testing corrections: The fallacy of using family-based error rates to make inferences about individual hypotheses

During multiple testing, researchers often adjust their alpha level to control the familywise error rate for a statistical inference about a joint union alternative hypothesis (e.g., “H1,1 or H1,2”). However, in some cases, they do not make this inference. Instead, they make separate inferences about each of the individual hypotheses that comprise the joint hypothesis (e.g., H1,1 and H1,2). For example, a researcher might use a Bonferroni correction to adjust their alpha level from the conventional level of 0.050 to 0.025 when testing H1,1 and H1,2, find a significant result for H1,1 (p < 0.025) and not for H1,2 (p > 0.025), and so claim support for H1,1 and not for H1,2. However, these separate individual inferences do not require an alpha adjustment. Only a statistical inference about the union alternative hypothesis “H1,1 or H1,2” requires an alpha adjustment because it is based on “at least one” significant result among the two tests, and so it refers to the familywise error rate. Hence, an inconsistent correction occurs when a researcher corrects their alpha level during multiple testing but does not make an inference about a union alternative hypothesis. In the present article, I discuss this inconsistent correction problem, including its reduction in statistical power for tests of individual hypotheses and its potential causes vis-à-vis error rate confusions and the alpha adjustment ritual. I also provide three illustrations of inconsistent corrections from recent psychology studies. I conclude that inconsistent corrections represent a symptom of statisticism, and I call for a more nuanced inference-based approach to multiple testing corrections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in Psychology (Online)
Methods in Psychology (Online) Experimental and Cognitive Psychology, Clinical Psychology, Developmental and Educational Psychology
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信