Min Wu , Ulderico Di Caprio , Olivier Van Der Ha , Bert Metten , Dries De Clercq , Furkan Elmaz , Siegfried Mercelis , Peter Hellinckx , Leen Braeken , Florence Vermeire , M. Enis Leblebici
{"title":"利用自动编码器模拟和定量分析化学过程中的拉曼光谱","authors":"Min Wu , Ulderico Di Caprio , Olivier Van Der Ha , Bert Metten , Dries De Clercq , Furkan Elmaz , Siegfried Mercelis , Peter Hellinckx , Leen Braeken , Florence Vermeire , M. Enis Leblebici","doi":"10.1016/j.chemolab.2024.105119","DOIUrl":null,"url":null,"abstract":"<div><p>Raman spectroscopy represents an advanced process analytical technology to monitor and control chemical and biochemical processes. This study presents an autoencoder-based methodology that simulates Raman spectra from process variables and predicts the concentrations of different chemicals. The methodology accurately predicts concentrations from the spectra, even considering the temperature influences, and can work as an anomaly detector in process monitoring. The proposed methodology has significant implications for the optimization of industrial processes, improving process efficiency, reducing waste, and minimizing costs. It can also be extended to other industrial processes and imaging spectroscopy techniques, making it a valuable tool for process monitoring. This study highlights the effectiveness of autoencoders in simulating spectra and quantitative analysis, contributing significantly to the field of process monitoring. It has the potential to revolutionize industrial process monitoring and optimization, leading to substantial improvements in productivity and sustainability.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"248 ","pages":"Article 105119"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and quantitative analysis of Raman spectra in chemical processes with autoencoders\",\"authors\":\"Min Wu , Ulderico Di Caprio , Olivier Van Der Ha , Bert Metten , Dries De Clercq , Furkan Elmaz , Siegfried Mercelis , Peter Hellinckx , Leen Braeken , Florence Vermeire , M. Enis Leblebici\",\"doi\":\"10.1016/j.chemolab.2024.105119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Raman spectroscopy represents an advanced process analytical technology to monitor and control chemical and biochemical processes. This study presents an autoencoder-based methodology that simulates Raman spectra from process variables and predicts the concentrations of different chemicals. The methodology accurately predicts concentrations from the spectra, even considering the temperature influences, and can work as an anomaly detector in process monitoring. The proposed methodology has significant implications for the optimization of industrial processes, improving process efficiency, reducing waste, and minimizing costs. It can also be extended to other industrial processes and imaging spectroscopy techniques, making it a valuable tool for process monitoring. This study highlights the effectiveness of autoencoders in simulating spectra and quantitative analysis, contributing significantly to the field of process monitoring. It has the potential to revolutionize industrial process monitoring and optimization, leading to substantial improvements in productivity and sustainability.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"248 \",\"pages\":\"Article 105119\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000595\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000595","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Simulation and quantitative analysis of Raman spectra in chemical processes with autoencoders
Raman spectroscopy represents an advanced process analytical technology to monitor and control chemical and biochemical processes. This study presents an autoencoder-based methodology that simulates Raman spectra from process variables and predicts the concentrations of different chemicals. The methodology accurately predicts concentrations from the spectra, even considering the temperature influences, and can work as an anomaly detector in process monitoring. The proposed methodology has significant implications for the optimization of industrial processes, improving process efficiency, reducing waste, and minimizing costs. It can also be extended to other industrial processes and imaging spectroscopy techniques, making it a valuable tool for process monitoring. This study highlights the effectiveness of autoencoders in simulating spectra and quantitative analysis, contributing significantly to the field of process monitoring. It has the potential to revolutionize industrial process monitoring and optimization, leading to substantial improvements in productivity and sustainability.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.