具有超疏水点互补晶格的平面上粘性流动的滑动长度

IF 2.5 3区 工程技术 Q2 MECHANICS
Alexei T. Skvortsov , Denis S. Grebenkov , Leon Chan , Andrew Ooi
{"title":"具有超疏水点互补晶格的平面上粘性流动的滑动长度","authors":"Alexei T. Skvortsov ,&nbsp;Denis S. Grebenkov ,&nbsp;Leon Chan ,&nbsp;Andrew Ooi","doi":"10.1016/j.euromechflu.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an approximation for the functional form of the slip length for two complementary lattice configurations of superhydrophobic texture. The first configuration consists of the square lattice of the superhydrophobic spots employed on the no-slip plane. The second configuration is an ‘inverse’ of the first one and consists of the same lattice but of the no-slip spots on the superhydrophobic base. We validate our analytical results by a numerical solution of Stokes equation.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 89-93"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slip length for a viscous flow over a plane with complementary lattices of superhydrophobic spots\",\"authors\":\"Alexei T. Skvortsov ,&nbsp;Denis S. Grebenkov ,&nbsp;Leon Chan ,&nbsp;Andrew Ooi\",\"doi\":\"10.1016/j.euromechflu.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an approximation for the functional form of the slip length for two complementary lattice configurations of superhydrophobic texture. The first configuration consists of the square lattice of the superhydrophobic spots employed on the no-slip plane. The second configuration is an ‘inverse’ of the first one and consists of the same lattice but of the no-slip spots on the superhydrophobic base. We validate our analytical results by a numerical solution of Stokes equation.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"106 \",\"pages\":\"Pages 89-93\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624000517\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000517","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了两种互补的超疏水纹理晶格配置的滑移长度函数形式近似值。第一种构型由在无滑动平面上使用的超疏水点方格组成。第二种配置是第一种配置的 "逆",由相同的晶格组成,但在超疏水基面上采用了防滑点。我们通过斯托克斯方程的数值求解验证了我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slip length for a viscous flow over a plane with complementary lattices of superhydrophobic spots

We propose an approximation for the functional form of the slip length for two complementary lattice configurations of superhydrophobic texture. The first configuration consists of the square lattice of the superhydrophobic spots employed on the no-slip plane. The second configuration is an ‘inverse’ of the first one and consists of the same lattice but of the no-slip spots on the superhydrophobic base. We validate our analytical results by a numerical solution of Stokes equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信