关于分裂八离子曲线

IF 0.6 4区 数学 Q2 LOGIC
Jeta Alo, MÜcahit Akbiyik
{"title":"关于分裂八离子曲线","authors":"Jeta Alo, MÜcahit Akbiyik","doi":"10.1093/jigpal/jzae039","DOIUrl":null,"url":null,"abstract":"In this paper, we first define the vector product in Minkowski space $\\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On split-octonionic curves\",\"authors\":\"Jeta Alo, MÜcahit Akbiyik\",\"doi\":\"10.1093/jigpal/jzae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first define the vector product in Minkowski space $\\\\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\\\\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先定义了闵科夫斯基空间 $\mathbb{R}_{4}^{7}$中的向量积,它与空间分裂八元空间相一致。接下来,我们利用空间分裂八元数和向量积推导出七维明考斯基曲线的 $G_{2}-$ 框架公式。我们证明了空间分裂八元数曲线满足弗雷内特-塞雷特公式。我们得到了两条空间分裂八元曲线的全同性,并给出了 $G_{2}-$ 框架和 Frenet-Serret 框架之间的关系。此外,我们还提出了在 $\mathbb{R}_{4}^{8}$ 中具有分裂八元的 Frenet-Serret 框架。最后,我们用 Matlab 代码举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On split-octonionic curves
In this paper, we first define the vector product in Minkowski space $\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信