{"title":"关于分裂八离子曲线","authors":"Jeta Alo, MÜcahit Akbiyik","doi":"10.1093/jigpal/jzae039","DOIUrl":null,"url":null,"abstract":"In this paper, we first define the vector product in Minkowski space $\\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On split-octonionic curves\",\"authors\":\"Jeta Alo, MÜcahit Akbiyik\",\"doi\":\"10.1093/jigpal/jzae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first define the vector product in Minkowski space $\\\\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\\\\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we first define the vector product in Minkowski space $\mathbb{R}_{4}^{7}$, which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet–Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet–Serret frame. Furthermore, we present the Frenet–Serret frame with split octonions in $\mathbb{R}_{4}^{8}$. Finally, we give illustrative examples with Matlab codes.