{"title":"各向异性粘弹性介质中的记忆效应:三相滞后模型分析","authors":"Kirti K. Jojare, Kishor R. Gaikwad","doi":"10.1007/s40997-024-00756-z","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of memory on anisotropic visco-thermoelastic media using a novel three-phase-lag (3PHL) model. The Fourier–Laplace transform is applied to obtain the characteristic equations for phase velocity, specific loss, attenuation coefficient, and penetration depth of viscous waves. The validity of the proposed model is evaluated by comparing it with previously published results. The outputs show the coupling between phase velocity, specific loss, attenuation coefficient, and penetration depth changes with time delay parameters, illustrating the effect of memory in this 3PH model. A thorough analysis of the linear kernel function was also conducted. Additionally, the presence of several kernel functions reveals significant differences in this visco-thermoelastic medium. Numerical calculations were performed on poly-methyl material due to its high thermal conductivity, low thermal expansion coefficient, high glass transition temperature, and good creep resistance. Mathematica software is used to generate two-dimensional and three-dimensional graphical results. The author believes that this study will be useful for wave-based technologies such as ultrasonic devices and energy harvesting technologies to design more efficient models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory Effects in Anisotropic Viscothermoelastic Media: A Three Phase Lag Model Analysis\",\"authors\":\"Kirti K. Jojare, Kishor R. Gaikwad\",\"doi\":\"10.1007/s40997-024-00756-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of memory on anisotropic visco-thermoelastic media using a novel three-phase-lag (3PHL) model. The Fourier–Laplace transform is applied to obtain the characteristic equations for phase velocity, specific loss, attenuation coefficient, and penetration depth of viscous waves. The validity of the proposed model is evaluated by comparing it with previously published results. The outputs show the coupling between phase velocity, specific loss, attenuation coefficient, and penetration depth changes with time delay parameters, illustrating the effect of memory in this 3PH model. A thorough analysis of the linear kernel function was also conducted. Additionally, the presence of several kernel functions reveals significant differences in this visco-thermoelastic medium. Numerical calculations were performed on poly-methyl material due to its high thermal conductivity, low thermal expansion coefficient, high glass transition temperature, and good creep resistance. Mathematica software is used to generate two-dimensional and three-dimensional graphical results. The author believes that this study will be useful for wave-based technologies such as ultrasonic devices and energy harvesting technologies to design more efficient models.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-024-00756-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00756-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Memory Effects in Anisotropic Viscothermoelastic Media: A Three Phase Lag Model Analysis
This study investigates the impact of memory on anisotropic visco-thermoelastic media using a novel three-phase-lag (3PHL) model. The Fourier–Laplace transform is applied to obtain the characteristic equations for phase velocity, specific loss, attenuation coefficient, and penetration depth of viscous waves. The validity of the proposed model is evaluated by comparing it with previously published results. The outputs show the coupling between phase velocity, specific loss, attenuation coefficient, and penetration depth changes with time delay parameters, illustrating the effect of memory in this 3PH model. A thorough analysis of the linear kernel function was also conducted. Additionally, the presence of several kernel functions reveals significant differences in this visco-thermoelastic medium. Numerical calculations were performed on poly-methyl material due to its high thermal conductivity, low thermal expansion coefficient, high glass transition temperature, and good creep resistance. Mathematica software is used to generate two-dimensional and three-dimensional graphical results. The author believes that this study will be useful for wave-based technologies such as ultrasonic devices and energy harvesting technologies to design more efficient models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.