低库张量恢复中的规模不变松弛,并应用于张量补全

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Huiwen Zheng, Yifei Lou, Guoliang Tian, Chao Wang
{"title":"低库张量恢复中的规模不变松弛,并应用于张量补全","authors":"Huiwen Zheng, Yifei Lou, Guoliang Tian, Chao Wang","doi":"10.1137/23m1560847","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 756-783, March 2024. <br/> Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor’s tubal rank. The rationale of the proposed model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low-rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low-rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion\",\"authors\":\"Huiwen Zheng, Yifei Lou, Guoliang Tian, Chao Wang\",\"doi\":\"10.1137/23m1560847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 756-783, March 2024. <br/> Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor’s tubal rank. The rationale of the proposed model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low-rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low-rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1560847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学杂志》,第 17 卷第 1 期,第 756-783 页,2024 年 3 月。 摘要本文考虑了一个低阶张量恢复问题。在张量奇异值分解(t-SVD)的基础上,我们提出了张量核规范和张量弗罗贝尼斯规范(TNF)的比值作为张量管秩的一种新的非凸代用指标。我们分析了所提出的强制低秩结构模型的理论依据。具体来说,我们引入了一个空空间属性(NSP)类型的条件,在该条件下,低阶张量是所提出的 TNF 恢复模型的局部最小值。在数值上,我们将低阶张量补全问题视为张量恢复的一个具体应用,并采用交替方向乘法(ADMM)来确保模型解在温和的条件下保证后续收敛。大量实验证明,我们提出的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 756-783, March 2024.
Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor’s tubal rank. The rationale of the proposed model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low-rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low-rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信