使用混合增强海鸥优化算法和支持向量机预测短期风力发电量:一种高精度方法

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Yuwei Liu, Lingling Li, Jiaqi Liu
{"title":"使用混合增强海鸥优化算法和支持向量机预测短期风力发电量:一种高精度方法","authors":"Yuwei Liu, Lingling Li, Jiaqi Liu","doi":"10.1080/15435075.2024.2334498","DOIUrl":null,"url":null,"abstract":"Affected by the uncertainty of external environmental factors, wind power generation has significant characteristics of randomness and non-stationarity. Accurately predicting wind power is a necess...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"32 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term wind power output prediction using hybrid-enhanced seagull optimization algorithm and support vector machine: A high-precision method\",\"authors\":\"Yuwei Liu, Lingling Li, Jiaqi Liu\",\"doi\":\"10.1080/15435075.2024.2334498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affected by the uncertainty of external environmental factors, wind power generation has significant characteristics of randomness and non-stationarity. Accurately predicting wind power is a necess...\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2024.2334498\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2334498","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

受外部环境不确定性因素的影响,风力发电具有明显的随机性和非稳定性特征。准确预测风力发电量是一项必要...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term wind power output prediction using hybrid-enhanced seagull optimization algorithm and support vector machine: A high-precision method
Affected by the uncertainty of external environmental factors, wind power generation has significant characteristics of randomness and non-stationarity. Accurately predicting wind power is a necess...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Green Energy
International Journal of Green Energy 工程技术-能源与燃料
CiteScore
6.60
自引率
9.10%
发文量
112
审稿时长
3.7 months
期刊介绍: International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信