SPIRAL:非凸有限和最小化的超线性收敛增量近端算法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos
{"title":"SPIRAL:非凸有限和最小化的超线性收敛增量近端算法","authors":"Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos","doi":"10.1007/s10589-023-00550-8","DOIUrl":null,"url":null,"abstract":"<p>We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"15 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization\",\"authors\":\"Pourya Behmandpoor, Puya Latafat, Andreas Themelis, Marc Moonen, Panagiotis Patrinos\",\"doi\":\"10.1007/s10589-023-00550-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.\\n</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00550-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00550-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 SPIRAL,这是一种线性收敛的增量最小算法,用于求解相对平滑假设下的非凸正则化有限和问题。SPIRAL 的每次迭代都由一个内循环和一个外循环组成。它将增量梯度更新与线性搜索相结合,线性搜索具有从不触发渐近的显著特性,从而在极限点的温和假设下实现超线性收敛。在不同的凸性、非凸性和非 Lipschitz 可微分问题上使用 L-BFGS 方向的模拟结果表明,我们的算法及其自适应变体与现有技术相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization

SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization

We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with a linesearch that has the remarkable property of never being triggered asymptotically, leading to superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our algorithm, as well as its adaptive variant, are competitive to the state of the art.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信