戴维-斯图尔特松 I方程中的流氓曲线

Bo Yang, Jianke Yang
{"title":"戴维-斯图尔特松 I方程中的流氓曲线","authors":"Bo Yang, Jianke Yang","doi":"arxiv-2403.18770","DOIUrl":null,"url":null,"abstract":"We report new rogue wave patterns whose wave crests form closed or open\ncurves in the spatial plane, which we call rogue curves, in the\nDavey-Stewartson I equation. These rogue curves come in various striking\nshapes, such as rings, double rings, and many others. They emerge from a\nuniform background (possibly with a few lumps on it), reach high amplitude in\nsuch striking shapes, and then disappear into the same background again. We\nreveal that these rogue curves would arise when an internal parameter in\nbilinear expressions of the rogue waves is real and large. Analytically, we\nshow that these rogue curves are predicted by root curves of certain types of\ndouble-real-variable polynomials. We compare analytical predictions of rogue\ncurves to true solutions and demonstrate good agreement between them.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogue curves in the Davey-Stewartson I equation\",\"authors\":\"Bo Yang, Jianke Yang\",\"doi\":\"arxiv-2403.18770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report new rogue wave patterns whose wave crests form closed or open\\ncurves in the spatial plane, which we call rogue curves, in the\\nDavey-Stewartson I equation. These rogue curves come in various striking\\nshapes, such as rings, double rings, and many others. They emerge from a\\nuniform background (possibly with a few lumps on it), reach high amplitude in\\nsuch striking shapes, and then disappear into the same background again. We\\nreveal that these rogue curves would arise when an internal parameter in\\nbilinear expressions of the rogue waves is real and large. Analytically, we\\nshow that these rogue curves are predicted by root curves of certain types of\\ndouble-real-variable polynomials. We compare analytical predictions of rogue\\ncurves to true solutions and demonstrate good agreement between them.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了新的流氓波模式,其波峰在空间平面上形成封闭或开放的曲线,我们称之为戴维-斯图尔特森 I 方程中的流氓曲线。这些无赖曲线有各种条纹形状,如环形、双环形等。它们从一个均匀的背景(可能上面有一些肿块)中出现,在这些引人注目的形状中达到高振幅,然后又消失在相同的背景中。我们发现,当流氓波线性表达式中的一个内部参数是真实且较大时,就会出现这些流氓曲线。分析表明,这些流氓曲线是由某些类型的双实变多项式的根曲线预测的。我们将流氓曲线的分析预测与真实解进行了比较,结果表明两者之间具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogue curves in the Davey-Stewartson I equation
We report new rogue wave patterns whose wave crests form closed or open curves in the spatial plane, which we call rogue curves, in the Davey-Stewartson I equation. These rogue curves come in various striking shapes, such as rings, double rings, and many others. They emerge from a uniform background (possibly with a few lumps on it), reach high amplitude in such striking shapes, and then disappear into the same background again. We reveal that these rogue curves would arise when an internal parameter in bilinear expressions of the rogue waves is real and large. Analytically, we show that these rogue curves are predicted by root curves of certain types of double-real-variable polynomials. We compare analytical predictions of rogue curves to true solutions and demonstrate good agreement between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信