亲和韦尔群与非阿贝尔离散系统:对 $d$-Painlevé 方程的应用

Irina Bobrova
{"title":"亲和韦尔群与非阿贝尔离散系统:对 $d$-Painlevé 方程的应用","authors":"Irina Bobrova","doi":"arxiv-2403.18463","DOIUrl":null,"url":null,"abstract":"A non-abelian generalisation of a birational representation of affine Weyl\ngroups and their application to the discrete dynamical systems is presented. By\nusing this generalisation, non-commutative analogs for the discrete systems of\n$A_n^{(1)}$, $n \\geq 2$ type and of $d$-Painlev\\'e equations with an additive\ndynamic were derived. A coalescence cascade of the later is also discussed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"558 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine Weyl groups and non-Abelian discrete systems: an application to the $d$-Painlevé equations\",\"authors\":\"Irina Bobrova\",\"doi\":\"arxiv-2403.18463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-abelian generalisation of a birational representation of affine Weyl\\ngroups and their application to the discrete dynamical systems is presented. By\\nusing this generalisation, non-commutative analogs for the discrete systems of\\n$A_n^{(1)}$, $n \\\\geq 2$ type and of $d$-Painlev\\\\'e equations with an additive\\ndynamic were derived. A coalescence cascade of the later is also discussed.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"558 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了仿射韦尔群双向表示的非阿贝尔广义化及其在离散动力系统中的应用。通过使用这种广义化,推导出了$A_n^{(1)}$, $n \geq 2$ 类型的离散系统和带有附加动力的$d$-Painlev\'e方程的非交换类比。此外,还讨论了后者的凝聚级联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Weyl groups and non-Abelian discrete systems: an application to the $d$-Painlevé equations
A non-abelian generalisation of a birational representation of affine Weyl groups and their application to the discrete dynamical systems is presented. By using this generalisation, non-commutative analogs for the discrete systems of $A_n^{(1)}$, $n \geq 2$ type and of $d$-Painlev\'e equations with an additive dynamic were derived. A coalescence cascade of the later is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信