利用人类专家和深度学习系统对前列腺癌自发荧光虚拟染色系统进行临床级验证

Pok Fai Wong, Carson McNeil, Yang Wang, Jack Paparian, Charles Santori, Michael Gutierrez, Andrew Homyk, Kunal Nagpal, Tiam Jaroensri, Ellery Wulczyn, Julia Sigman, David Steiner, Sudha Rao, Po-Hsuan Cameron Cheng, Luke Restoric, Jonathan Roy, Peter Cimermancic
{"title":"利用人类专家和深度学习系统对前列腺癌自发荧光虚拟染色系统进行临床级验证","authors":"Pok Fai Wong, Carson McNeil, Yang Wang, Jack Paparian, Charles Santori, Michael Gutierrez, Andrew Homyk, Kunal Nagpal, Tiam Jaroensri, Ellery Wulczyn, Julia Sigman, David Steiner, Sudha Rao, Po-Hsuan Cameron Cheng, Luke Restoric, Jonathan Roy, Peter Cimermancic","doi":"10.1101/2024.03.27.24304447","DOIUrl":null,"url":null,"abstract":"The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate (IDC-P) includes Gleason grading of tumor morphology on the hematoxylin and eosin (H&E) stain, and immunohistochemistry (IHC) markers on the PIN-4 stain (CK5/6, P63, AMACR). In this work, we create an automated system for producing both virtual H&E and PIN-4 IHC stains from unstained prostate tissue using a high-throughput multispectral fluorescence microscope and artificial intelligence & machine learning. We demonstrate that the virtual stainer models can produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we validate our system through extensive human review and computational analysis, using a previously-validated Gleason scoring model, and an expert panel, on a large dataset of test slides. This study extends our previous work on virtual staining from autofluorescence, demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous standard of qualitative and quantitative evaluation for digital pathology.","PeriodicalId":501528,"journal":{"name":"medRxiv - Pathology","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical-Grade Validation of an Autofluorescence Virtual Staining System with Human Experts and a Deep Learning System for Prostate Cancer\",\"authors\":\"Pok Fai Wong, Carson McNeil, Yang Wang, Jack Paparian, Charles Santori, Michael Gutierrez, Andrew Homyk, Kunal Nagpal, Tiam Jaroensri, Ellery Wulczyn, Julia Sigman, David Steiner, Sudha Rao, Po-Hsuan Cameron Cheng, Luke Restoric, Jonathan Roy, Peter Cimermancic\",\"doi\":\"10.1101/2024.03.27.24304447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate (IDC-P) includes Gleason grading of tumor morphology on the hematoxylin and eosin (H&E) stain, and immunohistochemistry (IHC) markers on the PIN-4 stain (CK5/6, P63, AMACR). In this work, we create an automated system for producing both virtual H&E and PIN-4 IHC stains from unstained prostate tissue using a high-throughput multispectral fluorescence microscope and artificial intelligence & machine learning. We demonstrate that the virtual stainer models can produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we validate our system through extensive human review and computational analysis, using a previously-validated Gleason scoring model, and an expert panel, on a large dataset of test slides. This study extends our previous work on virtual staining from autofluorescence, demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous standard of qualitative and quantitative evaluation for digital pathology.\",\"PeriodicalId\":501528,\"journal\":{\"name\":\"medRxiv - Pathology\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.03.27.24304447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.03.27.24304447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前列腺腺癌和导管内癌(IDC-P)的组织诊断包括苏木精和伊红(H&E)染色上肿瘤形态的格里森分级,以及 PIN-4 染色(CK5/6、P63、AMACR)上的免疫组化(IHC)标记。在这项工作中,我们利用高通量多光谱荧光显微镜和人工智能&机器学习创建了一个自动化系统,可从未被染料的前列腺组织中生成虚拟 H&E 和 PIN-4 IHC 染色。我们证明,虚拟染色机模型可以生成适合泌尿生殖病理学家诊断的高质量图像。具体来说,我们通过广泛的人工审查和计算分析,利用先前验证过的格里森评分模型和专家小组,在大量测试切片数据集上验证了我们的系统。这项研究扩展了我们之前在自发荧光虚拟染色方面的工作,证明了这项技术在前列腺癌方面的临床实用性,并为数字病理学的定性和定量评估提供了严格的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical-Grade Validation of an Autofluorescence Virtual Staining System with Human Experts and a Deep Learning System for Prostate Cancer
The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate (IDC-P) includes Gleason grading of tumor morphology on the hematoxylin and eosin (H&E) stain, and immunohistochemistry (IHC) markers on the PIN-4 stain (CK5/6, P63, AMACR). In this work, we create an automated system for producing both virtual H&E and PIN-4 IHC stains from unstained prostate tissue using a high-throughput multispectral fluorescence microscope and artificial intelligence & machine learning. We demonstrate that the virtual stainer models can produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we validate our system through extensive human review and computational analysis, using a previously-validated Gleason scoring model, and an expert panel, on a large dataset of test slides. This study extends our previous work on virtual staining from autofluorescence, demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous standard of qualitative and quantitative evaluation for digital pathology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信