{"title":"硬边平面正交多项式的黎曼-希尔伯特层次结构","authors":"Haakan Hedenmalm, Aron Wennman","doi":"10.1353/ajm.2024.a923237","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\\varkappa$, the expansion holds with an $\\mathrm{O}(N^{-\\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\\partial\\mathscr{D}$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemann-Hilbert hierarchies for hard edge planar orthogonal polynomials\",\"authors\":\"Haakan Hedenmalm, Aron Wennman\",\"doi\":\"10.1353/ajm.2024.a923237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>abstract:</p><p>We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\\\\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\\\\varkappa$, the expansion holds with an $\\\\mathrm{O}(N^{-\\\\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\\\\partial\\\\mathscr{D}$.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2024.a923237\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a923237","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Riemann-Hilbert hierarchies for hard edge planar orthogonal polynomials
abstract:
We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\varkappa$, the expansion holds with an $\mathrm{O}(N^{-\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\partial\mathscr{D}$.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.