与布洛赫空间 p-Carleson 度量相关的解析函数空间

Pub Date : 2024-03-29 DOI:10.1007/s11785-024-01512-6
{"title":"与布洛赫空间 p-Carleson 度量相关的解析函数空间","authors":"","doi":"10.1007/s11785-024-01512-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We investigate the <em>p</em>-Carleson measure for the Bloch space <span> <span>\\({\\mathcal {B}}\\)</span> </span> and introduce a holomorphic function space <span> <span>\\( W_{\\mathcal {B}}^{p,\\alpha }\\)</span> </span> associated with this measure. An integral operator which preserves the <em>p</em>-Carleson measure for <span> <span>\\({\\mathcal {B}}\\)</span> </span> is established. As applications, we give a generalized Jones’ formula for <span> <span>\\( W_{\\mathcal {B}}^{p,\\alpha }\\)</span> </span>, characterize the bounded small Hankel operator <span> <span>\\(h_{s,f}\\)</span> </span> from <span> <span>\\({\\mathcal {B}}\\)</span> </span> to the Bergman space <span> <span>\\(A_\\alpha ^p\\)</span> </span>, and give an atomic decomposition of <span> <span>\\( W_{\\mathcal {B}}^{p,\\alpha }\\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Function Spaces Associated with the p-Carleson Measure for the Bloch Space\",\"authors\":\"\",\"doi\":\"10.1007/s11785-024-01512-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We investigate the <em>p</em>-Carleson measure for the Bloch space <span> <span>\\\\({\\\\mathcal {B}}\\\\)</span> </span> and introduce a holomorphic function space <span> <span>\\\\( W_{\\\\mathcal {B}}^{p,\\\\alpha }\\\\)</span> </span> associated with this measure. An integral operator which preserves the <em>p</em>-Carleson measure for <span> <span>\\\\({\\\\mathcal {B}}\\\\)</span> </span> is established. As applications, we give a generalized Jones’ formula for <span> <span>\\\\( W_{\\\\mathcal {B}}^{p,\\\\alpha }\\\\)</span> </span>, characterize the bounded small Hankel operator <span> <span>\\\\(h_{s,f}\\\\)</span> </span> from <span> <span>\\\\({\\\\mathcal {B}}\\\\)</span> </span> to the Bergman space <span> <span>\\\\(A_\\\\alpha ^p\\\\)</span> </span>, and give an atomic decomposition of <span> <span>\\\\( W_{\\\\mathcal {B}}^{p,\\\\alpha }\\\\)</span> </span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01512-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01512-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们研究了布洛赫空间 \({\mathcal {B}}\) 的 p-Carleson 度量,并引入了与该度量相关的全形函数空间 \( W_{\mathcal {B}}^{p,\alpha }\) 。为 \({\mathcal {B}}\) 建立了一个保留 p-Carleson 度量的积分算子。作为应用,我们给出了 \( W_{\mathcal {B}}^{p,\alpha }\) 的广义琼斯公式,描述了从\({\mathcal {B}}\) 到伯格曼空间 \(A_\alpha ^p\)的有界小汉克尔算子 \(h_{s,f}\) 的特征,并给出了 \( W_{\mathcal {B}}^{p,\alpha }\) 的原子分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analytic Function Spaces Associated with the p-Carleson Measure for the Bloch Space

Abstract

We investigate the p-Carleson measure for the Bloch space \({\mathcal {B}}\) and introduce a holomorphic function space \( W_{\mathcal {B}}^{p,\alpha }\) associated with this measure. An integral operator which preserves the p-Carleson measure for \({\mathcal {B}}\) is established. As applications, we give a generalized Jones’ formula for \( W_{\mathcal {B}}^{p,\alpha }\) , characterize the bounded small Hankel operator \(h_{s,f}\) from \({\mathcal {B}}\) to the Bergman space \(A_\alpha ^p\) , and give an atomic decomposition of \( W_{\mathcal {B}}^{p,\alpha }\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信