{"title":"论形式变形在 $K$-cohomology 中的可代数性","authors":"Eoin Mackall","doi":"arxiv-2403.19008","DOIUrl":null,"url":null,"abstract":"We show that algebraizability of the functors $R^1\\pi_*\\mathcal{K}^M_{2,X}$\nand $R^2\\pi_*\\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth\nand proper varieties $\\pi:X\\rightarrow k$ defined over an algebraic extension\n$k$ of $\\mathbb{Q}$. The same is true for the \\'etale sheafifications of these\nfunctors as well. To get these results we introduce a notion of relative $K$-homology for\nschemes of finite type over a finite dimensional, Noetherian, excellent base\nscheme over a field. We include this material in an appendix.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the algebraizability of formal deformations in $K$-cohomology\",\"authors\":\"Eoin Mackall\",\"doi\":\"arxiv-2403.19008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that algebraizability of the functors $R^1\\\\pi_*\\\\mathcal{K}^M_{2,X}$\\nand $R^2\\\\pi_*\\\\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth\\nand proper varieties $\\\\pi:X\\\\rightarrow k$ defined over an algebraic extension\\n$k$ of $\\\\mathbb{Q}$. The same is true for the \\\\'etale sheafifications of these\\nfunctors as well. To get these results we introduce a notion of relative $K$-homology for\\nschemes of finite type over a finite dimensional, Noetherian, excellent base\\nscheme over a field. We include this material in an appendix.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.19008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.19008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the algebraizability of formal deformations in $K$-cohomology
We show that algebraizability of the functors $R^1\pi_*\mathcal{K}^M_{2,X}$
and $R^2\pi_*\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth
and proper varieties $\pi:X\rightarrow k$ defined over an algebraic extension
$k$ of $\mathbb{Q}$. The same is true for the \'etale sheafifications of these
functors as well. To get these results we introduce a notion of relative $K$-homology for
schemes of finite type over a finite dimensional, Noetherian, excellent base
scheme over a field. We include this material in an appendix.