论形式变形在 $K$-cohomology 中的可代数性

Eoin Mackall
{"title":"论形式变形在 $K$-cohomology 中的可代数性","authors":"Eoin Mackall","doi":"arxiv-2403.19008","DOIUrl":null,"url":null,"abstract":"We show that algebraizability of the functors $R^1\\pi_*\\mathcal{K}^M_{2,X}$\nand $R^2\\pi_*\\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth\nand proper varieties $\\pi:X\\rightarrow k$ defined over an algebraic extension\n$k$ of $\\mathbb{Q}$. The same is true for the \\'etale sheafifications of these\nfunctors as well. To get these results we introduce a notion of relative $K$-homology for\nschemes of finite type over a finite dimensional, Noetherian, excellent base\nscheme over a field. We include this material in an appendix.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the algebraizability of formal deformations in $K$-cohomology\",\"authors\":\"Eoin Mackall\",\"doi\":\"arxiv-2403.19008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that algebraizability of the functors $R^1\\\\pi_*\\\\mathcal{K}^M_{2,X}$\\nand $R^2\\\\pi_*\\\\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth\\nand proper varieties $\\\\pi:X\\\\rightarrow k$ defined over an algebraic extension\\n$k$ of $\\\\mathbb{Q}$. The same is true for the \\\\'etale sheafifications of these\\nfunctors as well. To get these results we introduce a notion of relative $K$-homology for\\nschemes of finite type over a finite dimensional, Noetherian, excellent base\\nscheme over a field. We include this material in an appendix.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.19008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.19008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了函数 $R^1\pi_*\mathcal{K}^M_{2,X}$ 和 $R^2\pi_*\mathcal{K}^M_{2,X}$ 的可代数性对于定义在 $\mathbb{Q}$ 的代数扩展 $k$ 上的光滑适当的 varieties $\pi:X\rightarrow k$ 是一个稳定的双向不变量。对于这些函数的 \'etale sheafifications 也是如此。为了得到这些结果,我们引入了一个概念,即在有限维、诺特的、在一个域上的优秀基元上的有限类型结构的相对$K$同调。我们将这些材料列入附录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the algebraizability of formal deformations in $K$-cohomology
We show that algebraizability of the functors $R^1\pi_*\mathcal{K}^M_{2,X}$ and $R^2\pi_*\mathcal{K}^M_{2,X}$ is a stable birational invariant for smooth and proper varieties $\pi:X\rightarrow k$ defined over an algebraic extension $k$ of $\mathbb{Q}$. The same is true for the \'etale sheafifications of these functors as well. To get these results we introduce a notion of relative $K$-homology for schemes of finite type over a finite dimensional, Noetherian, excellent base scheme over a field. We include this material in an appendix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信