{"title":"冰柱涟漪上","authors":"","doi":"10.1007/s10665-024-10336-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Natural icicles have an overall conical shape modulated by surface ripples. It has been noted from many observations of icicles formed in nature and in the laboratory that the wavelength of the ripples has a very narrow spectrum between about 8 and 12 mm and that, as time evolves, the phase of the ripples migrates upwards. In this pedagogical review, I explore some of the physical mechanisms that can cause and mediate the formation and migration of ripples on icicles using simple mathematical models. To keep the mathematics more straightforward and transparent, I confine attention to two dimensions. A key physical parameter is the surface tension between the film of water that coats an icicle and the air that surrounds it, which causes a phase shift between the film–air interface and the ice–film interface. I show that the wavelength of ripples is dominantly proportional to the cube root of the square of the gravity-capillary length times the thickness of the water film. At high film-flow rates, advection-dominated heat transfer coupled with the interfacial phase shift becomes the dominant driver of instability. Gibbs–Thomson undercooling provides an unexpectedly large stabilisation of small wavelengths at these large flow rates, sufficient to maintain wavelength selection at millimetre scales.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On icicle ripples\",\"authors\":\"\",\"doi\":\"10.1007/s10665-024-10336-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Natural icicles have an overall conical shape modulated by surface ripples. It has been noted from many observations of icicles formed in nature and in the laboratory that the wavelength of the ripples has a very narrow spectrum between about 8 and 12 mm and that, as time evolves, the phase of the ripples migrates upwards. In this pedagogical review, I explore some of the physical mechanisms that can cause and mediate the formation and migration of ripples on icicles using simple mathematical models. To keep the mathematics more straightforward and transparent, I confine attention to two dimensions. A key physical parameter is the surface tension between the film of water that coats an icicle and the air that surrounds it, which causes a phase shift between the film–air interface and the ice–film interface. I show that the wavelength of ripples is dominantly proportional to the cube root of the square of the gravity-capillary length times the thickness of the water film. At high film-flow rates, advection-dominated heat transfer coupled with the interfacial phase shift becomes the dominant driver of instability. Gibbs–Thomson undercooling provides an unexpectedly large stabilisation of small wavelengths at these large flow rates, sufficient to maintain wavelength selection at millimetre scales.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10336-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10336-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Natural icicles have an overall conical shape modulated by surface ripples. It has been noted from many observations of icicles formed in nature and in the laboratory that the wavelength of the ripples has a very narrow spectrum between about 8 and 12 mm and that, as time evolves, the phase of the ripples migrates upwards. In this pedagogical review, I explore some of the physical mechanisms that can cause and mediate the formation and migration of ripples on icicles using simple mathematical models. To keep the mathematics more straightforward and transparent, I confine attention to two dimensions. A key physical parameter is the surface tension between the film of water that coats an icicle and the air that surrounds it, which causes a phase shift between the film–air interface and the ice–film interface. I show that the wavelength of ripples is dominantly proportional to the cube root of the square of the gravity-capillary length times the thickness of the water film. At high film-flow rates, advection-dominated heat transfer coupled with the interfacial phase shift becomes the dominant driver of instability. Gibbs–Thomson undercooling provides an unexpectedly large stabilisation of small wavelengths at these large flow rates, sufficient to maintain wavelength selection at millimetre scales.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.