配位驱动超分子组装中的手性传感

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC
Abhik Paul, Subhadip Roy
{"title":"配位驱动超分子组装中的手性传感","authors":"Abhik Paul, Subhadip Roy","doi":"10.2174/0113852728292501240301062823","DOIUrl":null,"url":null,"abstract":": Chirality is a widespread structural characteristic found in nature and plays a vital role in the structure and functioning of almost all biological systems. Nevertheless, the translation of chirality into synthetic systems is highly intricate yet captivating, as it not only applies fundamental understanding but also has the potential to tackle significant difficulties in biochemistry and medicine. Structurally, the process of coordination- driven self-assembly involves the organization of basic molecular components into well-defined porous homochiral metal-organic cages (MOCs). This allows for a systematic investigation of the enantioselective processes occurring within the nanocavities, which have limited space and specific chiral microenvironments. This article aims to provide a comprehensive summary of the recent advancements in supramolecular chirality generated in the fascinating class of porous MOCs. It will cover the synthesis and characterization of these materials, as well as the implications of their stereochemical information in terms of chiral recognition and enantio- separation. Subsequently, a subjective viewpoint will be presented regarding the potential, possibilities, and significant challenges in the future advancement of this domain, aiming to expand the progress in creating novel chiral functional materials in the realm of chemistry and beyond.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirality Sensing in Coordination-driven Supramolecular Assemblies\",\"authors\":\"Abhik Paul, Subhadip Roy\",\"doi\":\"10.2174/0113852728292501240301062823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Chirality is a widespread structural characteristic found in nature and plays a vital role in the structure and functioning of almost all biological systems. Nevertheless, the translation of chirality into synthetic systems is highly intricate yet captivating, as it not only applies fundamental understanding but also has the potential to tackle significant difficulties in biochemistry and medicine. Structurally, the process of coordination- driven self-assembly involves the organization of basic molecular components into well-defined porous homochiral metal-organic cages (MOCs). This allows for a systematic investigation of the enantioselective processes occurring within the nanocavities, which have limited space and specific chiral microenvironments. This article aims to provide a comprehensive summary of the recent advancements in supramolecular chirality generated in the fascinating class of porous MOCs. It will cover the synthesis and characterization of these materials, as well as the implications of their stereochemical information in terms of chiral recognition and enantio- separation. Subsequently, a subjective viewpoint will be presented regarding the potential, possibilities, and significant challenges in the future advancement of this domain, aiming to expand the progress in creating novel chiral functional materials in the realm of chemistry and beyond.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728292501240301062823\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728292501240301062823","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

:手性是自然界中广泛存在的一种结构特征,在几乎所有生物系统的结构和功能中都发挥着至关重要的作用。然而,将手性转化为合成系统的过程非常复杂,但却非常吸引人,因为它不仅应用了基本的理解,而且有可能解决生物化学和医学中的重大难题。从结构上讲,配位驱动自组装过程涉及将基本分子成分组织成定义明确的多孔同手性金属有机笼(MOCs)。这样就可以对纳米空腔内发生的对映选择性过程进行系统研究,因为纳米空腔的空间有限,而且存在特定的手性微环境。本文旨在全面总结多孔 MOCs 这一迷人类别中产生的超分子手性的最新进展。文章将介绍这些材料的合成和表征,以及其立体化学信息在手性识别和对映体分离方面的影响。随后,将就这一领域未来发展的潜力、可能性和重大挑战提出主观观点,旨在扩大在化学及其他领域创造新型手性功能材料的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chirality Sensing in Coordination-driven Supramolecular Assemblies
: Chirality is a widespread structural characteristic found in nature and plays a vital role in the structure and functioning of almost all biological systems. Nevertheless, the translation of chirality into synthetic systems is highly intricate yet captivating, as it not only applies fundamental understanding but also has the potential to tackle significant difficulties in biochemistry and medicine. Structurally, the process of coordination- driven self-assembly involves the organization of basic molecular components into well-defined porous homochiral metal-organic cages (MOCs). This allows for a systematic investigation of the enantioselective processes occurring within the nanocavities, which have limited space and specific chiral microenvironments. This article aims to provide a comprehensive summary of the recent advancements in supramolecular chirality generated in the fascinating class of porous MOCs. It will cover the synthesis and characterization of these materials, as well as the implications of their stereochemical information in terms of chiral recognition and enantio- separation. Subsequently, a subjective viewpoint will be presented regarding the potential, possibilities, and significant challenges in the future advancement of this domain, aiming to expand the progress in creating novel chiral functional materials in the realm of chemistry and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信