Adeel Mubarik, Faiza Shafiq, Ammasi Arunkumar, Xue-Hai Ju
{"title":"基于寡噻吩的供体分子的计算建模,提升有机太阳能电池的光电属性","authors":"Adeel Mubarik, Faiza Shafiq, Ammasi Arunkumar, Xue-Hai Ju","doi":"10.1002/jccs.202400033","DOIUrl":null,"url":null,"abstract":"<p>The computational modeling of seven oligothiophene-based donor molecules (TZ1–TZ7) designed by acceptor modification at the terminal position of the literature molecule (TZR) were discussed for organic solar cells (OSCs). DFT simulations using B3LYP/def2svp levels were performed to study the optoelectronic, and PV properties of TZ1–TZ7. A range of essential aspects for efficient small donor molecules like open circuit voltages (<i>V</i><sub>OC</sub>), excitation energy (<i>E</i><sub>x</sub>), dipole moment (μ), density of state (DOS), absorption maxima (<i>λ</i><sub>max</sub>), transition density matrix (TDM), binding energy (<i>E</i><sub>b</sub>), and frontier molecular orbitals (FMOs) of TZ1–TZ7 and TZR have also been investigated. DOS and FMOs analysis revealed a reduced energy gap (<i>E</i><sub>g</sub>) and effective charge transfer (CT) in the TZ1–TZ7 molecules. The absorption spectra were examined using TD-DFT. Due to smaller <i>E</i><sub>g</sub>, <i>E</i><sub>b</sub>, <i>E</i><sub>x</sub>, and higher <i>λ</i><sub>max</sub>, <i>μ</i>, the TZ1–TZ7 molecules exhibit remarkable optoelectronic properties. The computed <i>V</i><sub>OC</sub> (0.969–1.189) and fill factor (0.886–0.897) for TZ1–TZ7 lead to improved power conversion efficiency (PCE) ranging from 14.05% to 17.60%. All compounds are strongly recommended for fabricating efficient OSCs with excellent PV properties. The current work is a step towards environmentally friendly organic PV and will pave the way for future structural engineering research for the efficient material design of OSCs.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 5","pages":"438-454"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational modeling of oligothiophenes-based donor molecules to boost optoelectronic attributes of organic solar cells\",\"authors\":\"Adeel Mubarik, Faiza Shafiq, Ammasi Arunkumar, Xue-Hai Ju\",\"doi\":\"10.1002/jccs.202400033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The computational modeling of seven oligothiophene-based donor molecules (TZ1–TZ7) designed by acceptor modification at the terminal position of the literature molecule (TZR) were discussed for organic solar cells (OSCs). DFT simulations using B3LYP/def2svp levels were performed to study the optoelectronic, and PV properties of TZ1–TZ7. A range of essential aspects for efficient small donor molecules like open circuit voltages (<i>V</i><sub>OC</sub>), excitation energy (<i>E</i><sub>x</sub>), dipole moment (μ), density of state (DOS), absorption maxima (<i>λ</i><sub>max</sub>), transition density matrix (TDM), binding energy (<i>E</i><sub>b</sub>), and frontier molecular orbitals (FMOs) of TZ1–TZ7 and TZR have also been investigated. DOS and FMOs analysis revealed a reduced energy gap (<i>E</i><sub>g</sub>) and effective charge transfer (CT) in the TZ1–TZ7 molecules. The absorption spectra were examined using TD-DFT. Due to smaller <i>E</i><sub>g</sub>, <i>E</i><sub>b</sub>, <i>E</i><sub>x</sub>, and higher <i>λ</i><sub>max</sub>, <i>μ</i>, the TZ1–TZ7 molecules exhibit remarkable optoelectronic properties. The computed <i>V</i><sub>OC</sub> (0.969–1.189) and fill factor (0.886–0.897) for TZ1–TZ7 lead to improved power conversion efficiency (PCE) ranging from 14.05% to 17.60%. All compounds are strongly recommended for fabricating efficient OSCs with excellent PV properties. The current work is a step towards environmentally friendly organic PV and will pave the way for future structural engineering research for the efficient material design of OSCs.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"71 5\",\"pages\":\"438-454\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400033\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational modeling of oligothiophenes-based donor molecules to boost optoelectronic attributes of organic solar cells
The computational modeling of seven oligothiophene-based donor molecules (TZ1–TZ7) designed by acceptor modification at the terminal position of the literature molecule (TZR) were discussed for organic solar cells (OSCs). DFT simulations using B3LYP/def2svp levels were performed to study the optoelectronic, and PV properties of TZ1–TZ7. A range of essential aspects for efficient small donor molecules like open circuit voltages (VOC), excitation energy (Ex), dipole moment (μ), density of state (DOS), absorption maxima (λmax), transition density matrix (TDM), binding energy (Eb), and frontier molecular orbitals (FMOs) of TZ1–TZ7 and TZR have also been investigated. DOS and FMOs analysis revealed a reduced energy gap (Eg) and effective charge transfer (CT) in the TZ1–TZ7 molecules. The absorption spectra were examined using TD-DFT. Due to smaller Eg, Eb, Ex, and higher λmax, μ, the TZ1–TZ7 molecules exhibit remarkable optoelectronic properties. The computed VOC (0.969–1.189) and fill factor (0.886–0.897) for TZ1–TZ7 lead to improved power conversion efficiency (PCE) ranging from 14.05% to 17.60%. All compounds are strongly recommended for fabricating efficient OSCs with excellent PV properties. The current work is a step towards environmentally friendly organic PV and will pave the way for future structural engineering research for the efficient material design of OSCs.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.