双连续半群的太阳二元论

IF 0.6 3区 数学 Q3 MATHEMATICS
K. Kruse, F.L. Schwenninger
{"title":"双连续半群的太阳二元论","authors":"K. Kruse,&nbsp;F.L. Schwenninger","doi":"10.1007/s10476-024-00014-z","DOIUrl":null,"url":null,"abstract":"<div><p> The sun dual space corresponding to a strongly continuous semigroup is a known concept when dealing with dual semigroups, which are in general only weak \n<span>\\(^*\\)</span>-continuous. In this paper we develop a corresponding theory for bi-continuous semigroups under mild assumptions on the involved locally convex topologies. We also discuss sun reflexivity and Favard spaces in this context, extending classical results by van Neerven. \n</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00014-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Sun Dual Theory For Bi-Continuous Semigroups\",\"authors\":\"K. Kruse,&nbsp;F.L. Schwenninger\",\"doi\":\"10.1007/s10476-024-00014-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> The sun dual space corresponding to a strongly continuous semigroup is a known concept when dealing with dual semigroups, which are in general only weak \\n<span>\\\\(^*\\\\)</span>-continuous. In this paper we develop a corresponding theory for bi-continuous semigroups under mild assumptions on the involved locally convex topologies. We also discuss sun reflexivity and Favard spaces in this context, extending classical results by van Neerven. \\n</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-024-00014-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00014-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00014-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

与强连续半群对应的太阳对偶空间是处理对偶半群时的一个已知概念,一般来说,对偶半群只有弱(^*\)连续性。在本文中,我们根据对相关局部凸拓扑的温和假设,为双连续半群建立了相应的理论。在此背景下,我们还讨论了太阳反射性和 Favard 空间,扩展了 van Neerven 的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sun Dual Theory For Bi-Continuous Semigroups

The sun dual space corresponding to a strongly continuous semigroup is a known concept when dealing with dual semigroups, which are in general only weak \(^*\)-continuous. In this paper we develop a corresponding theory for bi-continuous semigroups under mild assumptions on the involved locally convex topologies. We also discuss sun reflexivity and Favard spaces in this context, extending classical results by van Neerven.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信