Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto
求助PDF
{"title":"与拉盖尔多项式展开相关的谐波分析算子的终点估计值","authors":"Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto","doi":"10.1002/mana.202300088","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^1((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^1((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> and also from <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^\\infty ((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> to the space of functions of bounded mean oscillation <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mi>M</mi>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {BMO}((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math>, with respect to the probability measure <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msubsup>\n <mo>∏</mo>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>d</mi>\n </msubsup>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <msub>\n <mi>α</mi>\n <mi>j</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mfrac>\n <msubsup>\n <mi>x</mi>\n <mi>j</mi>\n <mrow>\n <mn>2</mn>\n <msub>\n <mi>α</mi>\n <mi>j</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <msubsup>\n <mi>x</mi>\n <mi>j</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </msup>\n <mi>d</mi>\n <msub>\n <mi>x</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n <annotation>$d\\gamma _\\alpha (x)=\\prod _{j=1}^d\\frac{2}{\\Gamma (\\alpha _j+1)} x_j^{2\\alpha _j+1} \\text{e}^{-x_j^2} dx_j$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <annotation>$(0,\\infty)^d$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>α</mi>\n <mi>d</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha =(\\alpha _1, \\dots,\\alpha _d)$</annotation>\n </semantics></math> is a multi-index in <span></span><math>\n <semantics>\n <msup>\n <mfenced>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mfenced>\n <mi>d</mi>\n </msup>\n <annotation>$\\left(-\\frac{1}{2},\\infty \\right)^d$</annotation>\n </semantics></math>. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions\",\"authors\":\"Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto\",\"doi\":\"10.1002/mana.202300088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^1((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^1((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> and also from <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^\\\\infty ((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> to the space of functions of bounded mean oscillation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mi>M</mi>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {BMO}((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math>, with respect to the probability measure <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msubsup>\\n <mo>∏</mo>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>d</mi>\\n </msubsup>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>α</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mfrac>\\n <msubsup>\\n <mi>x</mi>\\n <mi>j</mi>\\n <mrow>\\n <mn>2</mn>\\n <msub>\\n <mi>α</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msubsup>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <msubsup>\\n <mi>x</mi>\\n <mi>j</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation>$d\\\\gamma _\\\\alpha (x)=\\\\prod _{j=1}^d\\\\frac{2}{\\\\Gamma (\\\\alpha _j+1)} x_j^{2\\\\alpha _j+1} \\\\text{e}^{-x_j^2} dx_j$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <annotation>$(0,\\\\infty)^d$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>⋯</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>α</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha =(\\\\alpha _1, \\\\dots,\\\\alpha _d)$</annotation>\\n </semantics></math> is a multi-index in <span></span><math>\\n <semantics>\\n <msup>\\n <mfenced>\\n <mo>−</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mfenced>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\left(-\\\\frac{1}{2},\\\\infty \\\\right)^d$</annotation>\\n </semantics></math>. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
在本文中,我们给出了从哈代型空间 H1((0,∞)d,γα)$H^1((0、\到 L1((0,∞)d,γα)$L^1((0,\infty)^d,\gamma _\alpha)$ 以及从 L∞((0,∞)d,γα)$L^\infty((0,\infty)^d、(0,\infty)^d,\gamma_\alpha)$到有界均值振荡函数空间 BMO((0,∞)d,γα)$textup {BMO}((0,\infty)^d,\gamma _\alpha)$、关于概率度量 dγα(x)=∏j=1d2Γ(αj+1)xj2αj+1e-xj2dxj$d\gamma _\alpha (x)=\prod _{j=1}^d\frac{2}{Gamma (\alpha _j+1)} x_j^{2\alpha _j+1}\当 α=(α1,⋯,αd)$\alpha =(\alpha _1, \dots,\alpha _d)$是(-12,∞)d$left(-\frac{1}{2},\infty \right)^d$中的多指数时,在(0,∞)d$(0,\infty)^d$上的text{e}^{-x_j^2} dx_j$。我们将应用它来建立里兹变换、最大算子、利特尔伍德-帕利函数、拉普拉斯变换类型的乘法器、分数积分以及拉盖尔设置中的变算子的端点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。