与拉盖尔多项式展开相关的谐波分析算子的终点估计值

Pub Date : 2024-03-27 DOI:10.1002/mana.202300088
Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto
{"title":"与拉盖尔多项式展开相关的谐波分析算子的终点估计值","authors":"Jorge J. Betancor,&nbsp;Estefanía Dalmasso,&nbsp;Pablo Quijano,&nbsp;Roberto Scotto","doi":"10.1002/mana.202300088","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^1((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^1((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> and also from <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^\\infty ((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math> to the space of functions of bounded mean oscillation <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mi>M</mi>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <mo>,</mo>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {BMO}((0,\\infty)^d,\\gamma _\\alpha)$</annotation>\n </semantics></math>, with respect to the probability measure <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>γ</mi>\n <mi>α</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msubsup>\n <mo>∏</mo>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>d</mi>\n </msubsup>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mi>Γ</mi>\n <mo>(</mo>\n <msub>\n <mi>α</mi>\n <mi>j</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mfrac>\n <msubsup>\n <mi>x</mi>\n <mi>j</mi>\n <mrow>\n <mn>2</mn>\n <msub>\n <mi>α</mi>\n <mi>j</mi>\n </msub>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <msubsup>\n <mi>x</mi>\n <mi>j</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </msup>\n <mi>d</mi>\n <msub>\n <mi>x</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n <annotation>$d\\gamma _\\alpha (x)=\\prod _{j=1}^d\\frac{2}{\\Gamma (\\alpha _j+1)} x_j^{2\\alpha _j+1} \\text{e}^{-x_j^2} dx_j$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <mi>d</mi>\n </msup>\n <annotation>$(0,\\infty)^d$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>α</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>α</mi>\n <mi>d</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha =(\\alpha _1, \\dots,\\alpha _d)$</annotation>\n </semantics></math> is a multi-index in <span></span><math>\n <semantics>\n <msup>\n <mfenced>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mfenced>\n <mi>d</mi>\n </msup>\n <annotation>$\\left(-\\frac{1}{2},\\infty \\right)^d$</annotation>\n </semantics></math>. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions\",\"authors\":\"Jorge J. Betancor,&nbsp;Estefanía Dalmasso,&nbsp;Pablo Quijano,&nbsp;Roberto Scotto\",\"doi\":\"10.1002/mana.202300088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^1((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^1((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> and also from <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^\\\\infty ((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math> to the space of functions of bounded mean oscillation <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mi>M</mi>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <mo>,</mo>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {BMO}((0,\\\\infty)^d,\\\\gamma _\\\\alpha)$</annotation>\\n </semantics></math>, with respect to the probability measure <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <msub>\\n <mi>γ</mi>\\n <mi>α</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msubsup>\\n <mo>∏</mo>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>d</mi>\\n </msubsup>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mi>Γ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>α</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mfrac>\\n <msubsup>\\n <mi>x</mi>\\n <mi>j</mi>\\n <mrow>\\n <mn>2</mn>\\n <msub>\\n <mi>α</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msubsup>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <msubsup>\\n <mi>x</mi>\\n <mi>j</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation>$d\\\\gamma _\\\\alpha (x)=\\\\prod _{j=1}^d\\\\frac{2}{\\\\Gamma (\\\\alpha _j+1)} x_j^{2\\\\alpha _j+1} \\\\text{e}^{-x_j^2} dx_j$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>d</mi>\\n </msup>\\n <annotation>$(0,\\\\infty)^d$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>α</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>⋯</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>α</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha =(\\\\alpha _1, \\\\dots,\\\\alpha _d)$</annotation>\\n </semantics></math> is a multi-index in <span></span><math>\\n <semantics>\\n <msup>\\n <mfenced>\\n <mo>−</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mfenced>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\left(-\\\\frac{1}{2},\\\\infty \\\\right)^d$</annotation>\\n </semantics></math>. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了从哈代型空间 H1((0,∞)d,γα)$H^1((0、\到 L1((0,∞)d,γα)$L^1((0,\infty)^d,\gamma _\alpha)$ 以及从 L∞((0,∞)d,γα)$L^\infty((0,\infty)^d、(0,\infty)^d,\gamma_\alpha)$到有界均值振荡函数空间 BMO((0,∞)d,γα)$textup {BMO}((0,\infty)^d,\gamma _\alpha)$、关于概率度量 dγα(x)=∏j=1d2Γ(αj+1)xj2αj+1e-xj2dxj$d\gamma _\alpha (x)=\prod _{j=1}^d\frac{2}{Gamma (\alpha _j+1)} x_j^{2\alpha _j+1}\当 α=(α1,⋯,αd)$\alpha =(\alpha _1, \dots,\alpha _d)$是(-12,∞)d$left(-\frac{1}{2},\infty \right)^d$中的多指数时,在(0,∞)d$(0,\infty)^d$上的text{e}^{-x_j^2} dx_j$。我们将应用它来建立里兹变换、最大算子、利特尔伍德-帕利函数、拉普拉斯变换类型的乘法器、分数积分以及拉盖尔设置中的变算子的端点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions

In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space H 1 ( ( 0 , ) d , γ α ) $H^1((0,\infty)^d,\gamma _\alpha)$ to L 1 ( ( 0 , ) d , γ α ) $L^1((0,\infty)^d,\gamma _\alpha)$ and also from L ( ( 0 , ) d , γ α ) $L^\infty ((0,\infty)^d,\gamma _\alpha)$ to the space of functions of bounded mean oscillation  B M O ( ( 0 , ) d , γ α ) $\textup {BMO}((0,\infty)^d,\gamma _\alpha)$ , with respect to the probability measure d γ α ( x ) = j = 1 d 2 Γ ( α j + 1 ) x j 2 α j + 1 e x j 2 d x j $d\gamma _\alpha (x)=\prod _{j=1}^d\frac{2}{\Gamma (\alpha _j+1)} x_j^{2\alpha _j+1} \text{e}^{-x_j^2} dx_j$ on ( 0 , ) d $(0,\infty)^d$ when α = ( α 1 , , α d ) $\alpha =(\alpha _1, \dots,\alpha _d)$ is a multi-index in 1 2 , d $\left(-\frac{1}{2},\infty \right)^d$ . We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood–Paley functions, multipliers of the Laplace transform type, fractional integrals, and variation operators in the Laguerre setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信