半无限旗流形和量子 K 理论的通用切瓦利公式

Cristian Lenart, Satoshi Naito, Daisuke Sagaki
{"title":"半无限旗流形和量子 K 理论的通用切瓦利公式","authors":"Cristian Lenart, Satoshi Naito, Daisuke Sagaki","doi":"10.1007/s00029-024-00924-8","DOIUrl":null,"url":null,"abstract":"<p>We give a Chevalley formula for an arbitrary weight for the torus-equivariant <i>K</i>-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum <i>K</i>-theory <span>\\(QK_{T}(G/B)\\)</span> of a (finite-dimensional) flag manifold <i>G</i>/<i>B</i>; this has been a longstanding conjecture about the multiplicative structure of <span>\\(QK_{T}(G/B)\\)</span>. In type <span>\\(A_{n-1}\\)</span>, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum <i>K</i>-theory <span>\\(QK(SL_{n}/B)\\)</span>; we also obtain very explicit information about the coefficients in the respective Chevalley formula.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory\",\"authors\":\"Cristian Lenart, Satoshi Naito, Daisuke Sagaki\",\"doi\":\"10.1007/s00029-024-00924-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a Chevalley formula for an arbitrary weight for the torus-equivariant <i>K</i>-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum <i>K</i>-theory <span>\\\\(QK_{T}(G/B)\\\\)</span> of a (finite-dimensional) flag manifold <i>G</i>/<i>B</i>; this has been a longstanding conjecture about the multiplicative structure of <span>\\\\(QK_{T}(G/B)\\\\)</span>. In type <span>\\\\(A_{n-1}\\\\)</span>, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum <i>K</i>-theory <span>\\\\(QK(SL_{n}/B)\\\\)</span>; we also obtain very explicit information about the coefficients in the respective Chevalley formula.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00924-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00924-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了半无限旗流形的环-常量 K 群的任意权重的切瓦利公式,这个公式用量子凹模型来表示。作为一个应用,我们证明了(有限维)旗流形 G/B 的(小)环方量子 K 理论 \(QK_{T}(G/B)\)的反主导基本权重的切瓦利公式;这是关于 \(QK_{T}(G/B)\)的乘法结构的一个长期猜想。在 \(A_{n-1}\) 型中,我们证明了所谓的量子格罗内狄克多项式确实代表了(非等变的)量子 K 理论 \(QK(SL_{n}/B)\) 中的(相反的)舒伯特类;我们还获得了关于各自的切瓦利公式中系数的非常明确的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory

We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory \(QK_{T}(G/B)\) of a (finite-dimensional) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of \(QK_{T}(G/B)\). In type \(A_{n-1}\), we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory \(QK(SL_{n}/B)\); we also obtain very explicit information about the coefficients in the respective Chevalley formula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信