论某些受限颜色分割函数的一些新算术特性

IF 0.9 Q2 MATHEMATICS
Ranganatha Dasappa,  Channabasavayya, Gedela Kavya Keerthana
{"title":"论某些受限颜色分割函数的一些新算术特性","authors":"Ranganatha Dasappa,&nbsp; Channabasavayya,&nbsp;Gedela Kavya Keerthana","doi":"10.1007/s40065-024-00458-z","DOIUrl":null,"url":null,"abstract":"<div><p>Very recently, Pushpa and Vasuki (Arab. J. Math. 11, 355–378, 2022) have proved Eisenstein series identities of level 5 of weight 2 due to Ramanujan and some new Eisenstein identities for level 7 by the elementary way. In their paper, they introduced seven restricted color partition functions, namely <span>\\(P^{*}(n), M(n), T^{*}(n), L(n), K(n), A(n)\\)</span>, and <i>B</i>(<i>n</i>), and proved a few congruence properties of these functions. The main aim of this paper is to obtain several new infinite families of congruences modulo <span>\\(2^a\\cdot 5^\\ell \\)</span> for <span>\\(P^{*}(n)\\)</span>, modulo <span>\\(2^3\\)</span> for <i>M</i>(<i>n</i>) and <span>\\(T^*(n)\\)</span>, where <span>\\(a=3, 4\\)</span> and <span>\\(\\ell \\ge 1\\)</span>. For instance, we prove that for <span>\\(n\\ge 0\\)</span>, </p><div><div><span>$$\\begin{aligned} P^{*}(5^\\ell (4n+3)+5^\\ell -1)&amp;\\equiv 0\\pmod {2^3\\cdot 5^{\\ell }}. \\end{aligned}$$</span></div></div><p>In addition, we prove witness identities for the following congruences due to Pushpa and Vasuki: </p><div><div><span>$$\\begin{aligned} M(5n+4)\\equiv 0\\pmod {5},\\quad T^{*}(5n+3)\\equiv 0\\pmod {5}. \\end{aligned}$$</span></div></div></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"13 2","pages":"275 - 289"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-024-00458-z.pdf","citationCount":"0","resultStr":"{\"title\":\"On some new arithmetic properties of certain restricted color partition functions\",\"authors\":\"Ranganatha Dasappa,&nbsp; Channabasavayya,&nbsp;Gedela Kavya Keerthana\",\"doi\":\"10.1007/s40065-024-00458-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Very recently, Pushpa and Vasuki (Arab. J. Math. 11, 355–378, 2022) have proved Eisenstein series identities of level 5 of weight 2 due to Ramanujan and some new Eisenstein identities for level 7 by the elementary way. In their paper, they introduced seven restricted color partition functions, namely <span>\\\\(P^{*}(n), M(n), T^{*}(n), L(n), K(n), A(n)\\\\)</span>, and <i>B</i>(<i>n</i>), and proved a few congruence properties of these functions. The main aim of this paper is to obtain several new infinite families of congruences modulo <span>\\\\(2^a\\\\cdot 5^\\\\ell \\\\)</span> for <span>\\\\(P^{*}(n)\\\\)</span>, modulo <span>\\\\(2^3\\\\)</span> for <i>M</i>(<i>n</i>) and <span>\\\\(T^*(n)\\\\)</span>, where <span>\\\\(a=3, 4\\\\)</span> and <span>\\\\(\\\\ell \\\\ge 1\\\\)</span>. For instance, we prove that for <span>\\\\(n\\\\ge 0\\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} P^{*}(5^\\\\ell (4n+3)+5^\\\\ell -1)&amp;\\\\equiv 0\\\\pmod {2^3\\\\cdot 5^{\\\\ell }}. \\\\end{aligned}$$</span></div></div><p>In addition, we prove witness identities for the following congruences due to Pushpa and Vasuki: </p><div><div><span>$$\\\\begin{aligned} M(5n+4)\\\\equiv 0\\\\pmod {5},\\\\quad T^{*}(5n+3)\\\\equiv 0\\\\pmod {5}. \\\\end{aligned}$$</span></div></div></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"13 2\",\"pages\":\"275 - 289\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-024-00458-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-024-00458-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-024-00458-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Pushpa 和 Vasuki (Arab. J. Math. 11, 355-378, 2022) 用初等方法证明了拉马努扬提出的权重为 2 的第 5 层的爱森斯坦数列等式和第 7 层的一些新的爱森斯坦等式。在他们的论文中,他们引入了七个受限颜色分割函数,即 \(P^{*}(n),M(n),T^{*}(n),L(n),K(n),A(n)\) 和 B(n),并证明了这些函数的一些全等性质。本文的主要目的是为\(P^{*}(n)\)求模\(2^a\cdot 5^ell \),为M(n)和\(T^*(n)\)求模\(2^3\),其中\(a=3, 4\) 和\(ell \ge 1\).例如,我们可以证明,对于(n),$$\begin{aligned}(开始{aligned})。P^{*}(5^\ell (4n+3)+5^\ell -1)&\equiv 0\pmod {2^3\cdot 5^{\ell }}.\end{aligned}$$ 此外,我们还证明了以下由 Pushpa 和 Vasuki 提出的同余式的见证同式:$$\begin{aligned}.M(5n+4)\equiv 0\pmod {5},\quad T^{*}(5n+3)\equiv 0\pmod {5}.\end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some new arithmetic properties of certain restricted color partition functions

Very recently, Pushpa and Vasuki (Arab. J. Math. 11, 355–378, 2022) have proved Eisenstein series identities of level 5 of weight 2 due to Ramanujan and some new Eisenstein identities for level 7 by the elementary way. In their paper, they introduced seven restricted color partition functions, namely \(P^{*}(n), M(n), T^{*}(n), L(n), K(n), A(n)\), and B(n), and proved a few congruence properties of these functions. The main aim of this paper is to obtain several new infinite families of congruences modulo \(2^a\cdot 5^\ell \) for \(P^{*}(n)\), modulo \(2^3\) for M(n) and \(T^*(n)\), where \(a=3, 4\) and \(\ell \ge 1\). For instance, we prove that for \(n\ge 0\),

$$\begin{aligned} P^{*}(5^\ell (4n+3)+5^\ell -1)&\equiv 0\pmod {2^3\cdot 5^{\ell }}. \end{aligned}$$

In addition, we prove witness identities for the following congruences due to Pushpa and Vasuki:

$$\begin{aligned} M(5n+4)\equiv 0\pmod {5},\quad T^{*}(5n+3)\equiv 0\pmod {5}. \end{aligned}$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信