{"title":"恢复平均风险价值下的稳健投资组合选择","authors":"Cosimo Munari, Justin Plückebaum, Stefan Weber","doi":"10.1137/23m1555491","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 295-314, March 2024. <br/> Abstract. We study mean-risk optimal portfolio problems where risk is measured by recovery average value at risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical average value at risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Portfolio Selection under Recovery Average Value at Risk\",\"authors\":\"Cosimo Munari, Justin Plückebaum, Stefan Weber\",\"doi\":\"10.1137/23m1555491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 295-314, March 2024. <br/> Abstract. We study mean-risk optimal portfolio problems where risk is measured by recovery average value at risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical average value at risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1555491\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/23m1555491","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Robust Portfolio Selection under Recovery Average Value at Risk
SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 295-314, March 2024. Abstract. We study mean-risk optimal portfolio problems where risk is measured by recovery average value at risk, a prominent example in the class of recovery risk measures. We establish existence results in the situation where the joint distribution of portfolio assets is known as well as in the situation where it is uncertain and only assumed to belong to a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around a benchmark distribution (box uncertainty). The comparison with the classical average value at risk shows that portfolio selection under its recovery version enables financial institutions to exert better control on the recovery on liabilities while still allowing for tractable computations.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.