利用带有自适应加权束调整功能的多双目高速摄像测量法对远距离移动物体进行动态测量

Xiaohua Tong, Yi Gao, Zhen Ye, Huan Xie, Peng Chen, Haibo Shi, Ziqi Liu, Xianglei Liu, Yusheng Xu, Rong Huang, Shijie Liu
{"title":"利用带有自适应加权束调整功能的多双目高速摄像测量法对远距离移动物体进行动态测量","authors":"Xiaohua Tong, Yi Gao, Zhen Ye, Huan Xie, Peng Chen, Haibo Shi, Ziqi Liu, Xianglei Liu, Yusheng Xu, Rong Huang, Shijie Liu","doi":"10.1111/phor.12485","DOIUrl":null,"url":null,"abstract":"The dynamic measurement of position and attitude information of a long-distance moving object is a common demand in ground testing of aerospace engineering. Due to the movement from far to near and the limitations of camera resolution, it is necessary to use multi-binocular cameras for segmented observation at different distances. However, achieving accurate and continuous position and attitude estimation is a challenging task. Therefore, this paper proposes a dynamic monitoring technique for long-distance movement based on a multi-binocular videogrammetric system. Aiming to solve the problem that the scale in images changes constantly during the moving process, a scale-adaptive tracking method of circular targets is presented. Bundle adjustment (BA) with joint segments using an adaptive-weighting least-squares strategy is developed to enhance the measurement accuracy. The feasibility and reliability of the proposed technique are validated by a ground testing of relative measurement for spacecraft rendezvous and docking. The experimental results indicate that the proposed technique can obtain the actual motion state of the moving object, with a positioning accuracy of 3.2 mm (root mean square error), which can provide a reliable third-party verification for on-orbit measurement systems in ground testing. Compared with the results of BA with individual segments and vision measurement software PhotoModeler, the accuracy is improved by 45% and 30%, respectively.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic measurement of a long-distance moving object using multi-binocular high-speed videogrammetry with adaptive-weighting bundle adjustment\",\"authors\":\"Xiaohua Tong, Yi Gao, Zhen Ye, Huan Xie, Peng Chen, Haibo Shi, Ziqi Liu, Xianglei Liu, Yusheng Xu, Rong Huang, Shijie Liu\",\"doi\":\"10.1111/phor.12485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic measurement of position and attitude information of a long-distance moving object is a common demand in ground testing of aerospace engineering. Due to the movement from far to near and the limitations of camera resolution, it is necessary to use multi-binocular cameras for segmented observation at different distances. However, achieving accurate and continuous position and attitude estimation is a challenging task. Therefore, this paper proposes a dynamic monitoring technique for long-distance movement based on a multi-binocular videogrammetric system. Aiming to solve the problem that the scale in images changes constantly during the moving process, a scale-adaptive tracking method of circular targets is presented. Bundle adjustment (BA) with joint segments using an adaptive-weighting least-squares strategy is developed to enhance the measurement accuracy. The feasibility and reliability of the proposed technique are validated by a ground testing of relative measurement for spacecraft rendezvous and docking. The experimental results indicate that the proposed technique can obtain the actual motion state of the moving object, with a positioning accuracy of 3.2 mm (root mean square error), which can provide a reliable third-party verification for on-orbit measurement systems in ground testing. Compared with the results of BA with individual segments and vision measurement software PhotoModeler, the accuracy is improved by 45% and 30%, respectively.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对远距离运动物体的位置和姿态信息进行动态测量是航空航天工程地面测试的常见需求。由于从远到近的运动和相机分辨率的限制,有必要使用多双目相机对不同距离进行分段观测。然而,实现精确、连续的位置和姿态估计是一项具有挑战性的任务。因此,本文提出了一种基于多双目视频测量系统的远距离运动动态监测技术。为了解决移动过程中图像尺度不断变化的问题,本文提出了一种圆形目标的尺度自适应跟踪方法。利用自适应加权最小二乘策略开发了关节段束调整(BA),以提高测量精度。通过对航天器交会对接的相对测量进行地面测试,验证了所提技术的可行性和可靠性。实验结果表明,所提出的技术可以获得运动物体的实际运动状态,定位精度为 3.2 毫米(均方根误差),可以为地面测试中的在轨测量系统提供可靠的第三方验证。与使用单个片段和视觉测量软件 PhotoModeler 的 BA 结果相比,精度分别提高了 45% 和 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic measurement of a long-distance moving object using multi-binocular high-speed videogrammetry with adaptive-weighting bundle adjustment

Dynamic measurement of a long-distance moving object using multi-binocular high-speed videogrammetry with adaptive-weighting bundle adjustment
The dynamic measurement of position and attitude information of a long-distance moving object is a common demand in ground testing of aerospace engineering. Due to the movement from far to near and the limitations of camera resolution, it is necessary to use multi-binocular cameras for segmented observation at different distances. However, achieving accurate and continuous position and attitude estimation is a challenging task. Therefore, this paper proposes a dynamic monitoring technique for long-distance movement based on a multi-binocular videogrammetric system. Aiming to solve the problem that the scale in images changes constantly during the moving process, a scale-adaptive tracking method of circular targets is presented. Bundle adjustment (BA) with joint segments using an adaptive-weighting least-squares strategy is developed to enhance the measurement accuracy. The feasibility and reliability of the proposed technique are validated by a ground testing of relative measurement for spacecraft rendezvous and docking. The experimental results indicate that the proposed technique can obtain the actual motion state of the moving object, with a positioning accuracy of 3.2 mm (root mean square error), which can provide a reliable third-party verification for on-orbit measurement systems in ground testing. Compared with the results of BA with individual segments and vision measurement software PhotoModeler, the accuracy is improved by 45% and 30%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信