一种新的弱耗散准线性浅水波方程的破浪现象

Xiaofang Dong, Xianxian Su, Kai Wang
{"title":"一种新的弱耗散准线性浅水波方程的破浪现象","authors":"Xiaofang Dong, Xianxian Su, Kai Wang","doi":"10.1007/s00605-024-01958-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we mainly study a new weakly dissipative quasilinear shallow-water waves equation, which can be formally derived from a model with the effect of underlying shear flow from the incompressible rotational two-dimensional shallow water in the moderately nonlinear regime by Wang, Kang and Liu (Appl Math Lett 124:107607, 2022). Considering the dissipative effect, the local well-posedness of the solution to this equation is first obtained by using Kato’s semigroup theory. We then establish the precise blow-up criterion by using the transport equation theory and Moser-type estimates. Moreover, some sufficient conditions which guarantee the occurrence of wave-breaking of solutions are studied according to the different real-valued intervals in which the dispersive parameter <span>\\(\\theta \\)</span> being located. It is noteworthy that we need to overcome the difficulty induced by complicated nonlocal nonlinear structure and different dispersive parameter ranges to get corresponding convolution estimates.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave-breaking phenomena for a new weakly dissipative quasilinear shallow-water waves equation\",\"authors\":\"Xiaofang Dong, Xianxian Su, Kai Wang\",\"doi\":\"10.1007/s00605-024-01958-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we mainly study a new weakly dissipative quasilinear shallow-water waves equation, which can be formally derived from a model with the effect of underlying shear flow from the incompressible rotational two-dimensional shallow water in the moderately nonlinear regime by Wang, Kang and Liu (Appl Math Lett 124:107607, 2022). Considering the dissipative effect, the local well-posedness of the solution to this equation is first obtained by using Kato’s semigroup theory. We then establish the precise blow-up criterion by using the transport equation theory and Moser-type estimates. Moreover, some sufficient conditions which guarantee the occurrence of wave-breaking of solutions are studied according to the different real-valued intervals in which the dispersive parameter <span>\\\\(\\\\theta \\\\)</span> being located. It is noteworthy that we need to overcome the difficulty induced by complicated nonlocal nonlinear structure and different dispersive parameter ranges to get corresponding convolution estimates.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01958-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01958-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究一种新的弱耗散准线性浅水波方程,该方程可以从王、康和刘(Appl Math Lett 124:107607,2022)的中等非线性制度下不可压缩旋转二维浅水中的一个具有底层剪切流效应的模型正式导出。考虑到耗散效应,我们首先利用加藤半群理论得到了该方程解的局部好求性。然后,我们利用输运方程理论和 Moser 型估计建立了精确的炸毁准则。此外,我们还根据分散参数 \(\theta \)所在的不同实值区间,研究了保证解发生破波的一些充分条件。值得注意的是,我们需要克服复杂的非局部非线性结构和不同的分散参数范围所带来的困难,才能得到相应的卷积估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave-breaking phenomena for a new weakly dissipative quasilinear shallow-water waves equation

In this paper, we mainly study a new weakly dissipative quasilinear shallow-water waves equation, which can be formally derived from a model with the effect of underlying shear flow from the incompressible rotational two-dimensional shallow water in the moderately nonlinear regime by Wang, Kang and Liu (Appl Math Lett 124:107607, 2022). Considering the dissipative effect, the local well-posedness of the solution to this equation is first obtained by using Kato’s semigroup theory. We then establish the precise blow-up criterion by using the transport equation theory and Moser-type estimates. Moreover, some sufficient conditions which guarantee the occurrence of wave-breaking of solutions are studied according to the different real-valued intervals in which the dispersive parameter \(\theta \) being located. It is noteworthy that we need to overcome the difficulty induced by complicated nonlocal nonlinear structure and different dispersive parameter ranges to get corresponding convolution estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信