用量子动力学方法研究膨胀宇宙中标量粒子的施温格产生

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Anastasia V. Lysenko, Oleksandr O. Sobol
{"title":"用量子动力学方法研究膨胀宇宙中标量粒子的施温格产生","authors":"Anastasia V. Lysenko, Oleksandr O. Sobol","doi":"10.1007/s10714-024-03226-8","DOIUrl":null,"url":null,"abstract":"<p>We study the Schwinger pair creation of scalar charged particles by a homogeneous electric field in an expanding universe in the quantum kinetic approach. We introduce an adiabatic vacuum for the scalar field based on the Wentzel–Kramers–Brillouin solution to the mode equation in conformal time and apply the formalism of Bogolyubov coefficients to derive a system of quantum Vlasov equations for three real kinetic functions. Compared to the analogous system of equations previously reported in the literature, the new one has two advantages. First, its solutions exhibit a faster decrease at large momenta which makes it more suitable for numerical computations. Second, it predicts no particle creation in the case of conformally coupled massless scalar field in the vanishing electric field, i.e., it respects the conformal symmetry of the system. We identify the ultraviolet divergences in the electric current and energy–momentum tensor of produced particles and introduce the corresponding counterterms in order to cancel them.</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum kinetic approach to the Schwinger production of scalar particles in an expanding universe\",\"authors\":\"Anastasia V. Lysenko, Oleksandr O. Sobol\",\"doi\":\"10.1007/s10714-024-03226-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Schwinger pair creation of scalar charged particles by a homogeneous electric field in an expanding universe in the quantum kinetic approach. We introduce an adiabatic vacuum for the scalar field based on the Wentzel–Kramers–Brillouin solution to the mode equation in conformal time and apply the formalism of Bogolyubov coefficients to derive a system of quantum Vlasov equations for three real kinetic functions. Compared to the analogous system of equations previously reported in the literature, the new one has two advantages. First, its solutions exhibit a faster decrease at large momenta which makes it more suitable for numerical computations. Second, it predicts no particle creation in the case of conformally coupled massless scalar field in the vanishing electric field, i.e., it respects the conformal symmetry of the system. We identify the ultraviolet divergences in the electric current and energy–momentum tensor of produced particles and introduce the corresponding counterterms in order to cancel them.</p>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10714-024-03226-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-024-03226-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们用量子动力学方法研究了膨胀宇宙中均质电场产生的标量带电粒子施温格对。我们基于共形时间中模式方程的文采尔-克拉默斯-布里渊解,引入了标量场的绝热真空,并应用波哥留波夫系数的形式主义,推导出三个实动能函数的量子弗拉索夫方程组。与之前文献中报道的类似方程组相比,新方程组有两个优点。首先,它的解在大矩量时的下降速度更快,因此更适合数值计算。其次,它预言了在电场消失的保角耦合无质量标量场情况下没有粒子产生,也就是说,它尊重了系统的保角对称性。我们确定了产生粒子的电流和能量-动量张量中的紫外发散,并引入相应的反式以消除它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum kinetic approach to the Schwinger production of scalar particles in an expanding universe

We study the Schwinger pair creation of scalar charged particles by a homogeneous electric field in an expanding universe in the quantum kinetic approach. We introduce an adiabatic vacuum for the scalar field based on the Wentzel–Kramers–Brillouin solution to the mode equation in conformal time and apply the formalism of Bogolyubov coefficients to derive a system of quantum Vlasov equations for three real kinetic functions. Compared to the analogous system of equations previously reported in the literature, the new one has two advantages. First, its solutions exhibit a faster decrease at large momenta which makes it more suitable for numerical computations. Second, it predicts no particle creation in the case of conformally coupled massless scalar field in the vanishing electric field, i.e., it respects the conformal symmetry of the system. We identify the ultraviolet divergences in the electric current and energy–momentum tensor of produced particles and introduce the corresponding counterterms in order to cancel them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信