生成式大型语言模型的未来应用:关于 ChatGPT 的数据驱动案例研究

IF 11.1 1区 管理学 Q1 ENGINEERING, INDUSTRIAL
Chiarello Filippo , Giordano Vito , Spada Irene , Barandoni Simone , Fantoni Gualtiero
{"title":"生成式大型语言模型的未来应用:关于 ChatGPT 的数据驱动案例研究","authors":"Chiarello Filippo ,&nbsp;Giordano Vito ,&nbsp;Spada Irene ,&nbsp;Barandoni Simone ,&nbsp;Fantoni Gualtiero","doi":"10.1016/j.technovation.2024.103002","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the evolving role of generative Large Language Models (LLMs). We develop a data-driven approach to collect and analyse tasks that users are asking to generative LLMs. Thanks to the focus on tasks this paper contributes to give a quantitative and granular understanding of the potential influence of LLMs in different business areas. Utilizing a dataset comprising over 3.8 million tweets, we identify and cluster 31,747 unique tasks, with a specific case study on ChatGPT. To reach this goal, the proposed method combines two Natural Language Processing (NLP) Techniques, Named Entity Recognition (NER) and BERTopic. The combination makes it possible to collect granular tasks of LLMs (NER) and clusters them in business areas (BERTopic). Our findings reveal a wide spectrum of applications, from programming assistance to creative content generation, highlighting LLM's versatility. The analysis highlighted six emerging areas of application for ChatGPT: human resources, programming, social media, office automation, search engines, education. The study also examines the implications of these findings for innovation management, proposing a research agenda to explore the intersection of the identified areas, with four stages of the innovation process: idea generation, screening/idea selection, development, and diffusion/sales/marketing.</p></div>","PeriodicalId":49444,"journal":{"name":"Technovation","volume":"133 ","pages":"Article 103002"},"PeriodicalIF":11.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016649722400052X/pdfft?md5=91584ae7f5b45865af0050ad7aa3739f&pid=1-s2.0-S016649722400052X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Future applications of generative large language models: A data-driven case study on ChatGPT\",\"authors\":\"Chiarello Filippo ,&nbsp;Giordano Vito ,&nbsp;Spada Irene ,&nbsp;Barandoni Simone ,&nbsp;Fantoni Gualtiero\",\"doi\":\"10.1016/j.technovation.2024.103002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study delves into the evolving role of generative Large Language Models (LLMs). We develop a data-driven approach to collect and analyse tasks that users are asking to generative LLMs. Thanks to the focus on tasks this paper contributes to give a quantitative and granular understanding of the potential influence of LLMs in different business areas. Utilizing a dataset comprising over 3.8 million tweets, we identify and cluster 31,747 unique tasks, with a specific case study on ChatGPT. To reach this goal, the proposed method combines two Natural Language Processing (NLP) Techniques, Named Entity Recognition (NER) and BERTopic. The combination makes it possible to collect granular tasks of LLMs (NER) and clusters them in business areas (BERTopic). Our findings reveal a wide spectrum of applications, from programming assistance to creative content generation, highlighting LLM's versatility. The analysis highlighted six emerging areas of application for ChatGPT: human resources, programming, social media, office automation, search engines, education. The study also examines the implications of these findings for innovation management, proposing a research agenda to explore the intersection of the identified areas, with four stages of the innovation process: idea generation, screening/idea selection, development, and diffusion/sales/marketing.</p></div>\",\"PeriodicalId\":49444,\"journal\":{\"name\":\"Technovation\",\"volume\":\"133 \",\"pages\":\"Article 103002\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016649722400052X/pdfft?md5=91584ae7f5b45865af0050ad7aa3739f&pid=1-s2.0-S016649722400052X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technovation\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016649722400052X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technovation","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016649722400052X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了生成式大型语言模型(LLM)不断演变的作用。我们开发了一种数据驱动方法,用于收集和分析用户向生成式大型语言模型提出的任务。得益于对任务的关注,本文有助于对 LLM 在不同业务领域的潜在影响有一个量化和细化的了解。利用由 380 多万条推文组成的数据集,我们识别并聚类了 31747 个独特的任务,并对 ChatGPT 进行了具体的案例研究。为了实现这一目标,我们提出的方法结合了两种自然语言处理(NLP)技术:命名实体识别(NER)和 BERTopic。这两种技术的结合可以收集 LLM 的细粒度任务(NER),并将它们按业务领域(BERTopic)进行聚类。我们的研究结果揭示了从编程辅助到创意内容生成等广泛的应用领域,凸显了 LLM 的多功能性。分析强调了 ChatGPT 的六个新兴应用领域:人力资源、编程、社交媒体、办公自动化、搜索引擎和教育。本研究还探讨了这些发现对创新管理的影响,提出了一个研究议程,以探索已确定领域与创新过程四个阶段的交叉点:创意生成、筛选/创意选择、开发和传播/销售/营销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future applications of generative large language models: A data-driven case study on ChatGPT

This study delves into the evolving role of generative Large Language Models (LLMs). We develop a data-driven approach to collect and analyse tasks that users are asking to generative LLMs. Thanks to the focus on tasks this paper contributes to give a quantitative and granular understanding of the potential influence of LLMs in different business areas. Utilizing a dataset comprising over 3.8 million tweets, we identify and cluster 31,747 unique tasks, with a specific case study on ChatGPT. To reach this goal, the proposed method combines two Natural Language Processing (NLP) Techniques, Named Entity Recognition (NER) and BERTopic. The combination makes it possible to collect granular tasks of LLMs (NER) and clusters them in business areas (BERTopic). Our findings reveal a wide spectrum of applications, from programming assistance to creative content generation, highlighting LLM's versatility. The analysis highlighted six emerging areas of application for ChatGPT: human resources, programming, social media, office automation, search engines, education. The study also examines the implications of these findings for innovation management, proposing a research agenda to explore the intersection of the identified areas, with four stages of the innovation process: idea generation, screening/idea selection, development, and diffusion/sales/marketing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technovation
Technovation 管理科学-工程:工业
CiteScore
15.10
自引率
11.20%
发文量
208
审稿时长
91 days
期刊介绍: The interdisciplinary journal Technovation covers various aspects of technological innovation, exploring processes, products, and social impacts. It examines innovation in both process and product realms, including social innovations like regulatory frameworks and non-economic benefits. Topics range from emerging trends and capital for development to managing technology-intensive ventures and innovation in organizations of different sizes. It also discusses organizational structures, investment strategies for science and technology enterprises, and the roles of technological innovators. Additionally, it addresses technology transfer between developing countries and innovation across enterprise, political, and economic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信