Xi Chen, Ying Zhang, Amanda M Fretts, Tauqeer Ali, Jason G Umans, Richard B Devereux, Elisa T Lee, Shelley A Cole, Yan Daniel Zhao
{"title":"评估在家庭研究中使用 GEE 方法分析二元结果的情况:强心家庭研究。","authors":"Xi Chen, Ying Zhang, Amanda M Fretts, Tauqeer Ali, Jason G Umans, Richard B Devereux, Elisa T Lee, Shelley A Cole, Yan Daniel Zhao","doi":"10.1080/10543406.2024.2333516","DOIUrl":null,"url":null,"abstract":"<p><p>The generalized estimating equations method (GEE) is commonly applied to analyze data obtained from family studies. GEE is well known for its robustness on misspecification of correlation structure. However, the unbalanced distribution of family sizes and complicated genetic relatedness structure within each family may challenge GEE performance. We focused our research on binary outcomes. To evaluate the performance of GEE, we conducted a series of simulations, on data generated adopting the kinship matrix (correlation structure within each family) from the Strong Heart Family Study (SHFS). We performed a fivefold cross-validation to further evaluate the GEE predictive power on data from the SHFS. A Bayesian modeling approach, with direct integration of the kinship matrix, was also included to contrast with GEE. Our simulation studies revealed that GEE performs well on a binary outcome from families having a relatively simple kinship structure. However, data with a binary outcome generated from families with complex kinship structures, especially with a large genetic variance, can challenge the performance of GEE.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"424-436"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the use of GEE methods for analyzing binary outcomes in family studies: the Strong Heart Family Study.\",\"authors\":\"Xi Chen, Ying Zhang, Amanda M Fretts, Tauqeer Ali, Jason G Umans, Richard B Devereux, Elisa T Lee, Shelley A Cole, Yan Daniel Zhao\",\"doi\":\"10.1080/10543406.2024.2333516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The generalized estimating equations method (GEE) is commonly applied to analyze data obtained from family studies. GEE is well known for its robustness on misspecification of correlation structure. However, the unbalanced distribution of family sizes and complicated genetic relatedness structure within each family may challenge GEE performance. We focused our research on binary outcomes. To evaluate the performance of GEE, we conducted a series of simulations, on data generated adopting the kinship matrix (correlation structure within each family) from the Strong Heart Family Study (SHFS). We performed a fivefold cross-validation to further evaluate the GEE predictive power on data from the SHFS. A Bayesian modeling approach, with direct integration of the kinship matrix, was also included to contrast with GEE. Our simulation studies revealed that GEE performs well on a binary outcome from families having a relatively simple kinship structure. However, data with a binary outcome generated from families with complex kinship structures, especially with a large genetic variance, can challenge the performance of GEE.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"424-436\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2333516\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2333516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Assessing the use of GEE methods for analyzing binary outcomes in family studies: the Strong Heart Family Study.
The generalized estimating equations method (GEE) is commonly applied to analyze data obtained from family studies. GEE is well known for its robustness on misspecification of correlation structure. However, the unbalanced distribution of family sizes and complicated genetic relatedness structure within each family may challenge GEE performance. We focused our research on binary outcomes. To evaluate the performance of GEE, we conducted a series of simulations, on data generated adopting the kinship matrix (correlation structure within each family) from the Strong Heart Family Study (SHFS). We performed a fivefold cross-validation to further evaluate the GEE predictive power on data from the SHFS. A Bayesian modeling approach, with direct integration of the kinship matrix, was also included to contrast with GEE. Our simulation studies revealed that GEE performs well on a binary outcome from families having a relatively simple kinship structure. However, data with a binary outcome generated from families with complex kinship structures, especially with a large genetic variance, can challenge the performance of GEE.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.