药物发现中渗透肝细胞的表征和应用。

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Sam Zhang, Christine C Orozco, Lloyd Wei Tat Tang, Jillian Racich, Anthony A Carlo, George Chang, David Tess, Christopher Keefer, Li Di
{"title":"药物发现中渗透肝细胞的表征和应用。","authors":"Sam Zhang, Christine C Orozco, Lloyd Wei Tat Tang, Jillian Racich, Anthony A Carlo, George Chang, David Tess, Christopher Keefer, Li Di","doi":"10.1208/s12248-024-00907-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similar enzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer be present if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"26 3","pages":"38"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and Applications of Permeabilized Hepatocytes in Drug Discovery.\",\"authors\":\"Sam Zhang, Christine C Orozco, Lloyd Wei Tat Tang, Jillian Racich, Anthony A Carlo, George Chang, David Tess, Christopher Keefer, Li Di\",\"doi\":\"10.1208/s12248-024-00907-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similar enzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer be present if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":\"26 3\",\"pages\":\"38\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00907-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00907-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞是与人体生理最相关的体外肝脏系统之一,用于转化清除率和药物相互作用(DDI)。然而,肝细胞的细胞膜会限制某些化合物进入细胞进行代谢和 DDI。肝细胞的被动渗透性在体外和体内可能不同,这使得人体转化变得复杂。渗透稳定的肝细胞提供了一种有用的工具,可用于探究渗透性限制代谢和 DDI 的机理。将 0.01% 的皂素(0.5 万个细胞/毫升)和 0.05% 的皂素(500 万个细胞/毫升)在 37°C 下孵育 5 分钟,可完全渗透肝细胞的质膜,而亚细胞器的膜则保持完好。透化后的肝细胞与未透化的完整肝细胞保持相似的酶活性,可在 -80°C 下保存至少 7 个月。这种方法可以保存剩余的肝细胞,从而降低成本。透化肝细胞中的皂素含量相对较低,对酶活性没有明显影响。由于渗透肝细胞中的细胞膜内容物会渗出,因此需要添加辅助因子才能进行代谢反应。细胞渗透后,如果移除培养基,细胞膜酶将不再存在。因此,无论是否去除培养基,透化肝细胞都有可能实现细胞膜酶的反应表型。虽然透化肝细胞的工作原理与人肝微粒体和 S9 分馏物类似,实验中需要添加辅助因子,但它们的行为更像肝细胞,能在 4 小时内保持酶活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization and Applications of Permeabilized Hepatocytes in Drug Discovery.

Characterization and Applications of Permeabilized Hepatocytes in Drug Discovery.

Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similar enzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer be present if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信