利用多项式强度变换从 T1 加权磁共振成像中稳健地分割丘脑核团

Julie P. Vidal, Lola Danet, Patrice Péran, Jérémie Pariente, Meritxell Bach Cuadra, Natalie M. Zahr, Emmanuel J. Barbeau, Manojkumar Saranathan
{"title":"利用多项式强度变换从 T1 加权磁共振成像中稳健地分割丘脑核团","authors":"Julie P. Vidal, Lola Danet, Patrice Péran, Jérémie Pariente, Meritxell Bach Cuadra, Natalie M. Zahr, Emmanuel J. Barbeau, Manojkumar Saranathan","doi":"10.1007/s00429-024-02777-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.</p>","PeriodicalId":518000,"journal":{"name":"Brain Structure and Function","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation\",\"authors\":\"Julie P. Vidal, Lola Danet, Patrice Péran, Jérémie Pariente, Meritxell Bach Cuadra, Natalie M. Zahr, Emmanuel J. Barbeau, Manojkumar Saranathan\",\"doi\":\"10.1007/s00429-024-02777-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.</p>\",\"PeriodicalId\":518000,\"journal\":{\"name\":\"Brain Structure and Function\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure and Function\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02777-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure and Function","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00429-024-02777-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 丘脑核的精确分割对于了解其在健康认知和病理中的作用至关重要,但由于图像对比度差,在标准 T1 加权(T1w)磁共振成像(MRI)上实现丘脑核的精确分割具有挑战性。白质剔除(WMn)磁共振成像序列可改善鞘内对比度,但并不属于临床方案或现有数据库的一部分。在这项研究中,我们引入了基于直方图的多项式合成(HIPS),这是一个快速预处理转换步骤,它利用强度转换的多项式近似值从标准 T1w MRI 合成类似 WMn 的图像对比度。HIPS 被纳入 "丘脑优化多图集分割"(THOMAS)管道,这是一种针对 WMn MRI 开发和优化的方法。HIPS-THOMAS与基于卷积神经网络(CNN)的分割方法以及为使用T1w图像而修改的THOMAS(T1w-THOMAS)进行了比较。在不同的图像对比度(MPRAGE、SPGR 和 MP2RAGE)、扫描仪制造商(PHILIPS、GE 和 Siemens)和场强(3 T 和 7 T)下测试了三种方法的稳健性和准确性。与 CNN 方法和 T1w-THOMAS 相比,HIPS 转换图像改善了丘脑内对比度和丘脑边界,HIPS-THOMAS 得到的平均 Dice 系数明显更高,体积误差也更小。最后,我们使用频繁移动的人体模型 MRI 数据集对所有三种方法的扫描仪间和扫描仪内变异性进行了比较,HIPS 的扫描仪间变异性最小,扫描仪内变异性与 T1w-THOMAS 不相上下。总之,我们的研究结果凸显了 HIPS 在增强标准 T1w MRI 丘脑核分割方面的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation

Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation

Abstract

Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信