能量临界情况下具有谐波势的格罗斯-皮塔耶夫斯基方程的基态

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Dmitry E. Pelinovsky, Szymon Sobieszek
{"title":"能量临界情况下具有谐波势的格罗斯-皮塔耶夫斯基方程的基态","authors":"Dmitry E. Pelinovsky, Szymon Sobieszek","doi":"10.3233/asy-241897","DOIUrl":null,"url":null,"abstract":"Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variationally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of this interval and diverges to infinity at the other end.We explore the shooting method in the limit of large norm to prove that the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter versus the supremum norm.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"53 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state of the Gross–Pitaevskii equation with a harmonic potential in the energy-critical case\",\"authors\":\"Dmitry E. Pelinovsky, Szymon Sobieszek\",\"doi\":\"10.3233/asy-241897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variationally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of this interval and diverges to infinity at the other end.We explore the shooting method in the limit of large norm to prove that the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter versus the supremum norm.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241897\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241897","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有谐波势的能量临界格罗斯-皮塔耶夫斯基方程的基态可以通过变分法构建。它存在于特征值参数的有限区间内。我们探索了大规范极限下的射影法,证明基态在近场点上接近于能量临界波方程的奥宾-塔伦提解,在远场点上接近于汇合超几何函数。射影法给出了特征值参数与上界规范的精确依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground state of the Gross–Pitaevskii equation with a harmonic potential in the energy-critical case
Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variationally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of this interval and diverges to infinity at the other end.We explore the shooting method in the limit of large norm to prove that the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter versus the supremum norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信