{"title":"用于估算剩余使用寿命的递归变异自动编码器方法","authors":"Nahuel Costa, Luciano Sánchez","doi":"10.1093/jigpal/jzae023","DOIUrl":null,"url":null,"abstract":"A new method for evaluating aircraft engine monitoring data is proposed. Commonly, prognostics and health management systems use knowledge of the degradation processes of certain engine components together with professional expert opinion to predict the Remaining Useful Life (RUL). New data-driven approaches have emerged to provide accurate diagnostics without relying on such costly processes. However, most of them lack an explanatory component to understand model learning and/or the nature of the data. A solution based on a novel recurrent version of a VAE is proposed in this paper to overcome this gap. The latent space learned by the model, trained with data from sensors placed in different parts of these engines, is exploited to build a self-explanatory map that can visually evaluate the rate of deterioration of the engines. Besides, a simple regressor model is built on top of the learned features of the encoder in order to numerically predict the RUL. As a result, remarkable prognostic accuracy is achieved, outperforming most of the novel and state-of-the-art approaches on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. In addition, a practical real-world application is included for Turbofan engine data. This study shows that the proposed prognostic and explainable framework presents a promising new approach.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent variational autoencoder approach for remaining useful life estimation\",\"authors\":\"Nahuel Costa, Luciano Sánchez\",\"doi\":\"10.1093/jigpal/jzae023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for evaluating aircraft engine monitoring data is proposed. Commonly, prognostics and health management systems use knowledge of the degradation processes of certain engine components together with professional expert opinion to predict the Remaining Useful Life (RUL). New data-driven approaches have emerged to provide accurate diagnostics without relying on such costly processes. However, most of them lack an explanatory component to understand model learning and/or the nature of the data. A solution based on a novel recurrent version of a VAE is proposed in this paper to overcome this gap. The latent space learned by the model, trained with data from sensors placed in different parts of these engines, is exploited to build a self-explanatory map that can visually evaluate the rate of deterioration of the engines. Besides, a simple regressor model is built on top of the learned features of the encoder in order to numerically predict the RUL. As a result, remarkable prognostic accuracy is achieved, outperforming most of the novel and state-of-the-art approaches on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. In addition, a practical real-world application is included for Turbofan engine data. This study shows that the proposed prognostic and explainable framework presents a promising new approach.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recurrent variational autoencoder approach for remaining useful life estimation
A new method for evaluating aircraft engine monitoring data is proposed. Commonly, prognostics and health management systems use knowledge of the degradation processes of certain engine components together with professional expert opinion to predict the Remaining Useful Life (RUL). New data-driven approaches have emerged to provide accurate diagnostics without relying on such costly processes. However, most of them lack an explanatory component to understand model learning and/or the nature of the data. A solution based on a novel recurrent version of a VAE is proposed in this paper to overcome this gap. The latent space learned by the model, trained with data from sensors placed in different parts of these engines, is exploited to build a self-explanatory map that can visually evaluate the rate of deterioration of the engines. Besides, a simple regressor model is built on top of the learned features of the encoder in order to numerically predict the RUL. As a result, remarkable prognostic accuracy is achieved, outperforming most of the novel and state-of-the-art approaches on the available modular aero-propulsion system simulation data (C-MAPSS dataset) from NASA. In addition, a practical real-world application is included for Turbofan engine data. This study shows that the proposed prognostic and explainable framework presents a promising new approach.