Aswini Ramakrishnan, Sindhu Swaminathan, Jeyanthinath Mayandi, Deepa K G
{"title":"无模板合成用于储能应用的空位定制高介孔一维 δ-MnO2","authors":"Aswini Ramakrishnan, Sindhu Swaminathan, Jeyanthinath Mayandi, Deepa K G","doi":"10.1088/2632-959x/ad2fd3","DOIUrl":null,"url":null,"abstract":"This work involves the synthesis of highly conducting, ultra-thin, mesoporous manganese dioxide, nanotubes and nanowires, using a sol–gel technique. This is a template-free method for preparing mesoporous (3.3 to 5.4 nm) nanotubes and nanowires of 10–15 nm radius with surface area (221.19 m<sup>2</sup>/g-102.09 m<sup>2</sup>/g). In the MnO<sub>2</sub> lattice, oxygen and cationic vacancies are tailored by changing the reducing agent for improved energy storage. X-ray photoelectron spectroscopic studies are conducted to quantify the oxygen and cationic vacancies. The tailored one-dimensional <italic toggle=\"yes\">δ</italic>-MnO<sub>2</sub> is used as an electrode material for symmetric and asymmetric supercapacitor designs. A non-toxic, less volatile aqueous neutral electrolyte is used for the supercapacitive measurement, giving a specific capacitance of 460.75 F g<sup>−1</sup> at 2 mV s<sup>−1</sup> with symmetric mode at 1 V. With activated carbon, this material can also produce asymmetric supercapacitors with a specific capacitance of 107.38 F g<sup>−1</sup> at 10 mV s<sup>−1</sup> at 1.7 V.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"234 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template free synthesis of vacancy tailored, highly mesoporous one-dimensional δ-MnO2 for energy storage applications\",\"authors\":\"Aswini Ramakrishnan, Sindhu Swaminathan, Jeyanthinath Mayandi, Deepa K G\",\"doi\":\"10.1088/2632-959x/ad2fd3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work involves the synthesis of highly conducting, ultra-thin, mesoporous manganese dioxide, nanotubes and nanowires, using a sol–gel technique. This is a template-free method for preparing mesoporous (3.3 to 5.4 nm) nanotubes and nanowires of 10–15 nm radius with surface area (221.19 m<sup>2</sup>/g-102.09 m<sup>2</sup>/g). In the MnO<sub>2</sub> lattice, oxygen and cationic vacancies are tailored by changing the reducing agent for improved energy storage. X-ray photoelectron spectroscopic studies are conducted to quantify the oxygen and cationic vacancies. The tailored one-dimensional <italic toggle=\\\"yes\\\">δ</italic>-MnO<sub>2</sub> is used as an electrode material for symmetric and asymmetric supercapacitor designs. A non-toxic, less volatile aqueous neutral electrolyte is used for the supercapacitive measurement, giving a specific capacitance of 460.75 F g<sup>−1</sup> at 2 mV s<sup>−1</sup> with symmetric mode at 1 V. With activated carbon, this material can also produce asymmetric supercapacitors with a specific capacitance of 107.38 F g<sup>−1</sup> at 10 mV s<sup>−1</sup> at 1.7 V.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad2fd3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad2fd3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这项工作涉及利用溶胶-凝胶技术合成高导电性、超薄、介孔二氧化锰、纳米管和纳米线。这是一种无模板方法,用于制备半径为 10-15 nm、表面积为 221.19 m2/g-102.09 m2/g 的介孔(3.3 至 5.4 nm)纳米管和纳米线。在二氧化锰晶格中,通过改变还原剂来定制氧和阳离子空位,从而改善能量存储。通过 X 射线光电子能谱研究对氧和阳离子空位进行了量化。定制的一维 δ-MnO2 可用作对称和非对称超级电容器设计的电极材料。超级电容测量使用的是无毒、挥发性较低的水性中性电解质,在 1 V 的对称模式下,2 mV s-1 的比电容为 460.75 F g-1。利用活性碳,这种材料还能产生不对称超级电容器,在 1.7 V 时,10 mV s-1 的比电容为 107.38 F g-1。
Template free synthesis of vacancy tailored, highly mesoporous one-dimensional δ-MnO2 for energy storage applications
This work involves the synthesis of highly conducting, ultra-thin, mesoporous manganese dioxide, nanotubes and nanowires, using a sol–gel technique. This is a template-free method for preparing mesoporous (3.3 to 5.4 nm) nanotubes and nanowires of 10–15 nm radius with surface area (221.19 m2/g-102.09 m2/g). In the MnO2 lattice, oxygen and cationic vacancies are tailored by changing the reducing agent for improved energy storage. X-ray photoelectron spectroscopic studies are conducted to quantify the oxygen and cationic vacancies. The tailored one-dimensional δ-MnO2 is used as an electrode material for symmetric and asymmetric supercapacitor designs. A non-toxic, less volatile aqueous neutral electrolyte is used for the supercapacitive measurement, giving a specific capacitance of 460.75 F g−1 at 2 mV s−1 with symmetric mode at 1 V. With activated carbon, this material can also produce asymmetric supercapacitors with a specific capacitance of 107.38 F g−1 at 10 mV s−1 at 1.7 V.