对角显性小加矩阵的三角剖分

Yuki Nishida, Sennosuke Watanabe, Yoshihide Watanabe
{"title":"对角显性小加矩阵的三角剖分","authors":"Yuki Nishida, Sennosuke Watanabe, Yoshihide Watanabe","doi":"10.1007/s10626-024-00397-z","DOIUrl":null,"url":null,"abstract":"<p>The min-plus algebra is a commutative semiring with two operations: addition <span>\\(\\varvec{a} \\oplus \\varvec{b := \\min (a,b)}\\)</span> and multiplication <span>\\(\\varvec{a} \\otimes \\varvec{b := a + b}\\)</span>. In this paper, we discuss a min-plus algebraic counterpart of matrix diagonalization in conventional linear algebra. Due to the absence of subtraction in the min-plus algebra, few matrices admit such a canonical form. Instead, we consider triangulation of min-plus matrices in terms of algebraic eigenvectors, which is an extended concept of usual eigenvectors. We deal with two types of min-plus matrices: strongly diagonally dominant (SDD) and nearly diagonally dominant (NDD) matrices. For an SDD matrix, the roots of the characteristic polynomial coincide with its diagonal entries. On the other hand, for an NDD matrix, the roots except for the maximum one appear in diagonal entries. We show that SDD matrices admit upper triangulation whose diagonal entries are algebraic eigenvalues, while NDD matrices admit block upper triangulation. We exhibit applications of triangulation of min-plus matrices to traffic flow models.</p>","PeriodicalId":92890,"journal":{"name":"Discrete event dynamic systems","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangulation of diagonally dominant min-plus matrices\",\"authors\":\"Yuki Nishida, Sennosuke Watanabe, Yoshihide Watanabe\",\"doi\":\"10.1007/s10626-024-00397-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The min-plus algebra is a commutative semiring with two operations: addition <span>\\\\(\\\\varvec{a} \\\\oplus \\\\varvec{b := \\\\min (a,b)}\\\\)</span> and multiplication <span>\\\\(\\\\varvec{a} \\\\otimes \\\\varvec{b := a + b}\\\\)</span>. In this paper, we discuss a min-plus algebraic counterpart of matrix diagonalization in conventional linear algebra. Due to the absence of subtraction in the min-plus algebra, few matrices admit such a canonical form. Instead, we consider triangulation of min-plus matrices in terms of algebraic eigenvectors, which is an extended concept of usual eigenvectors. We deal with two types of min-plus matrices: strongly diagonally dominant (SDD) and nearly diagonally dominant (NDD) matrices. For an SDD matrix, the roots of the characteristic polynomial coincide with its diagonal entries. On the other hand, for an NDD matrix, the roots except for the maximum one appear in diagonal entries. We show that SDD matrices admit upper triangulation whose diagonal entries are algebraic eigenvalues, while NDD matrices admit block upper triangulation. We exhibit applications of triangulation of min-plus matrices to traffic flow models.</p>\",\"PeriodicalId\":92890,\"journal\":{\"name\":\"Discrete event dynamic systems\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete event dynamic systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10626-024-00397-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete event dynamic systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10626-024-00397-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最小加代数是一个交换半等式,有两种运算:加法(\varvec{a} \oplus \varvec{b := \min (a,b)}\ )和乘法(\varvec{a} \otimes \varvec{b := a + b}/)。在本文中,我们将讨论传统线性代数中矩阵对角化的 min-plus 代数对应方法。由于 min-plus 代数中不存在减法,因此很少有矩阵可以采用这种对角形式。相反,我们考虑用代数特征向量对 min-plus 矩阵进行三角化,这是通常特征向量的扩展概念。我们处理两种类型的 min-plus 矩阵:强对角显性(SDD)矩阵和近对角显性(NDD)矩阵。对于 SDD 矩阵,特征多项式的根与其对角线项重合。另一方面,对于 NDD 矩阵,除了最大根之外,其他根都出现在对角线条目中。我们证明 SDD 矩阵允许对角线项为代数特征值的上三角剖分,而 NDD 矩阵允许块上三角剖分。我们展示了最小加矩阵三角化在交通流模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triangulation of diagonally dominant min-plus matrices

Triangulation of diagonally dominant min-plus matrices

The min-plus algebra is a commutative semiring with two operations: addition \(\varvec{a} \oplus \varvec{b := \min (a,b)}\) and multiplication \(\varvec{a} \otimes \varvec{b := a + b}\). In this paper, we discuss a min-plus algebraic counterpart of matrix diagonalization in conventional linear algebra. Due to the absence of subtraction in the min-plus algebra, few matrices admit such a canonical form. Instead, we consider triangulation of min-plus matrices in terms of algebraic eigenvectors, which is an extended concept of usual eigenvectors. We deal with two types of min-plus matrices: strongly diagonally dominant (SDD) and nearly diagonally dominant (NDD) matrices. For an SDD matrix, the roots of the characteristic polynomial coincide with its diagonal entries. On the other hand, for an NDD matrix, the roots except for the maximum one appear in diagonal entries. We show that SDD matrices admit upper triangulation whose diagonal entries are algebraic eigenvalues, while NDD matrices admit block upper triangulation. We exhibit applications of triangulation of min-plus matrices to traffic flow models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信