{"title":"加权锥形拉顿变换分析","authors":"Nguyen Ngoc Duy","doi":"10.1088/2399-6528/ad2b8d","DOIUrl":null,"url":null,"abstract":"In this article, we consider the weighted conical Radon transform—the transform is motivated by Compton camera imaging as well as optical tomography. Our contribution involves introducing new inversion formulas for the weighted conical Radon transform, including explicit formulas and properties associated with convolution frames. Furthermore, we propose reconstruction formulas that solve for variety weighted parameters in the two-dimensional space.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"49 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the weighted conical Radon transform\",\"authors\":\"Nguyen Ngoc Duy\",\"doi\":\"10.1088/2399-6528/ad2b8d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the weighted conical Radon transform—the transform is motivated by Compton camera imaging as well as optical tomography. Our contribution involves introducing new inversion formulas for the weighted conical Radon transform, including explicit formulas and properties associated with convolution frames. Furthermore, we propose reconstruction formulas that solve for variety weighted parameters in the two-dimensional space.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad2b8d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad2b8d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
In this article, we consider the weighted conical Radon transform—the transform is motivated by Compton camera imaging as well as optical tomography. Our contribution involves introducing new inversion formulas for the weighted conical Radon transform, including explicit formulas and properties associated with convolution frames. Furthermore, we propose reconstruction formulas that solve for variety weighted parameters in the two-dimensional space.