图中与外无关的双罗马支配的算法方面

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Amit Sharma, P. Venkata Subba Reddy, S. Arumugam, Jakkepalli Pavan Kumar
{"title":"图中与外无关的双罗马支配的算法方面","authors":"Amit Sharma, P. Venkata Subba Reddy, S. Arumugam, Jakkepalli Pavan Kumar","doi":"10.1142/s0129054124500059","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo>=</mo><mo stretchy=\"false\">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be graph. For any function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo stretchy=\"false\">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>, let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>:</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>i</mi><mo stretchy=\"false\">}</mo></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>3</mn></math></span><span></span>. The function <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> is called an outer-independent double Roman dominating function (OIDRDF) if the following conditions are satisfied.</p><table border=\"0\" list-type=\"order\" width=\"95%\"><tr><td valign=\"top\"><sup>(i)</sup></td><td colspan=\"5\" valign=\"top\"><p>If <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, then <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>N</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>|</mo><mo>≥</mo><mn>1</mn></math></span><span></span> or <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>N</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>≥</mo><mn>2</mn></math></span><span></span></p></td></tr><tr><td valign=\"top\"><sup>(ii)</sup></td><td colspan=\"5\" valign=\"top\"><p>If <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>, then <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>N</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">∩</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">∪</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>|</mo><mo>≥</mo><mn>1</mn></math></span><span></span></p></td></tr><tr><td valign=\"top\"><sup>(iii)</sup></td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is independent.</p></td></tr></table><p>The <i>outer-independent double Roman domination number</i> of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is defined by <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>γ</mi></mrow><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mstyle><mtext mathvariant=\"normal\">min</mtext></mstyle><mstyle><mfenced close=\"\" open=\"{\" separators=\"\"><mrow></mrow></mfenced></mstyle><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>h</mi><mo stretchy=\"false\">(</mo><mi>v</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mi>h</mi></math></span><span></span> is an OIDRDF OF <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mstyle><mfenced close=\"\" open=\"}\" separators=\"\"><mrow></mrow></mfenced></mstyle></math></span><span></span>. We prove that the decision problem MOIDRDP, corresponding to <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>γ</mi></mrow><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is NP-complete for split graphs. We also show that it is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the MOIDRDP and domination are not equivalent in computational complexity aspects.</p>","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithmic Aspects of Outer-Independent Double Roman Domination in Graphs\",\"authors\":\"Amit Sharma, P. Venkata Subba Reddy, S. Arumugam, Jakkepalli Pavan Kumar\",\"doi\":\"10.1142/s0129054124500059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be graph. For any function <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo stretchy=\\\"false\\\">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, let <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>:</mo><mi>h</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi>i</mi><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>3</mn></math></span><span></span>. The function <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi></math></span><span></span> is called an outer-independent double Roman dominating function (OIDRDF) if the following conditions are satisfied.</p><table border=\\\"0\\\" list-type=\\\"order\\\" width=\\\"95%\\\"><tr><td valign=\\\"top\\\"><sup>(i)</sup></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>If <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, then <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>N</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>|</mo><mo>≥</mo><mn>1</mn></math></span><span></span> or <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>N</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>≥</mo><mn>2</mn></math></span><span></span></p></td></tr><tr><td valign=\\\"top\\\"><sup>(ii)</sup></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>If <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>, then <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>N</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">∩</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">∪</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>|</mo><mo>≥</mo><mn>1</mn></math></span><span></span></p></td></tr><tr><td valign=\\\"top\\\"><sup>(iii)</sup></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p><span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> is independent.</p></td></tr></table><p>The <i>outer-independent double Roman domination number</i> of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> is defined by <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>γ</mi></mrow><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mstyle><mtext mathvariant=\\\"normal\\\">min</mtext></mstyle><mstyle><mfenced close=\\\"\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow></mrow></mfenced></mstyle><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>h</mi><mo stretchy=\\\"false\\\">(</mo><mi>v</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mi>h</mi></math></span><span></span> is an OIDRDF OF <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mstyle><mfenced close=\\\"\\\" open=\\\"}\\\" separators=\\\"\\\"><mrow></mrow></mfenced></mstyle></math></span><span></span>. We prove that the decision problem MOIDRDP, corresponding to <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>γ</mi></mrow><mrow><mi>o</mi><mi>i</mi><mi>d</mi><mi>R</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is NP-complete for split graphs. We also show that it is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the MOIDRDP and domination are not equivalent in computational complexity aspects.</p>\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054124500059\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设 G=(V,E) 为图。对于任意函数 h:V→{0,1,2,3},设 Vi={v∈V:h(v)=i},0≤i≤3。如果满足以下条件,函数 h 称为外部独立双罗马支配函数(OIDRDF):(i)如果 v∈V0,则|N(v)∩V3|≥1 或|N(v)∩V2|≥2(ii)如果 v∈V1,则|N(v)∩(V2∪V3)|≥1(iii)V0 是独立的。G 的外独立双罗马支配数定义为 γoidR(G)=min∑v∈Vh(v):h 是 G 的一个 OIDRDF。我们证明,与 γoidR(G) 对应的决策问题 MOIDRDP 对于分裂图来说是 NP-完全的。我们还证明,对于连通的阈值图和有界树宽图,它是线性时间可解的。最后,我们证明 MOIDRDP 和 domination 在计算复杂性方面并不等同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic Aspects of Outer-Independent Double Roman Domination in Graphs

Let G=(V,E) be graph. For any function h:V{0,1,2,3}, let Vi={vV:h(v)=i}, 0i3. The function h is called an outer-independent double Roman dominating function (OIDRDF) if the following conditions are satisfied.

(i)

If vV0, then |N(v)V3|1 or |N(v)V2|2

(ii)

If vV1, then |N(v)(V2V3)|1

(iii)

V0 is independent.

The outer-independent double Roman domination number of G is defined by γoidR(G)=minvVh(v):h is an OIDRDF OF G. We prove that the decision problem MOIDRDP, corresponding to γoidR(G) is NP-complete for split graphs. We also show that it is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the MOIDRDP and domination are not equivalent in computational complexity aspects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信