氧粲铋原化物 Bi2SO2、Bi2SeO2 和 Bi2TeO2 的热电特性

IF 6.3 3区 材料科学 Q1 ENERGY & FUELS
J M Flitcroft, A Althubiani, J M Skelton
{"title":"氧粲铋原化物 Bi2SO2、Bi2SeO2 和 Bi2TeO2 的热电特性","authors":"J M Flitcroft, A Althubiani, J M Skelton","doi":"10.1088/2515-7655/ad2afd","DOIUrl":null,"url":null,"abstract":"We present a detailed theoretical study of the thermoelectric properties of the bismuth oxychalcogenides Bi<sub>2</sub>ChO<sub>2</sub> (Ch = S, Se, Te). The electrical transport is modelled using semi-classical Boltzmann transport theory with electronic structures from hybrid density-functional theory, including an approximate model for the electron lifetimes. The lattice thermal conductivity is calculated using first-principles phonon calculations with an explicit treatment of anharmonicity, yielding microscopic insight into how partial replacement of the chalcogen in the bismuth chalcogenides impacts the phonon transport. We find very good agreement between the predicted transport properties and a favourable cancellation of errors that allows for near-quantitative predictions of the thermoelectric figure of merit <italic toggle=\"yes\">ZT</italic>. Our calculations suggest recent experiments on n-doped Bi<sub>2</sub>SeO<sub>2</sub> have achieved close to the largest <italic toggle=\"yes\">ZT</italic> possible in bulk materials, whereas the largest reported <italic toggle=\"yes\">ZT</italic> for Bi<sub>2</sub>TeO<sub>2</sub> could be improved sixfold by optimising the carrier concentration. We also predict that much larger <italic toggle=\"yes\">ZT</italic> &gt; 2.5, competitive with the benchmark thermoelectric SnSe, could be obtained for Bi<sub>2</sub>SO<sub>2</sub> and Bi<sub>2</sub>SeO<sub>2</sub> with heavy p-type doping. This study demonstrates the predictive power of this modelling approach for studying thermoelectrics and highlights several avenues for improving the performance of the Bi<sub>2</sub>ChO<sub>2</sub>.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"3 6 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric properties of the bismuth oxychalcogenides Bi2SO2, Bi2SeO2 and Bi2TeO2\",\"authors\":\"J M Flitcroft, A Althubiani, J M Skelton\",\"doi\":\"10.1088/2515-7655/ad2afd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a detailed theoretical study of the thermoelectric properties of the bismuth oxychalcogenides Bi<sub>2</sub>ChO<sub>2</sub> (Ch = S, Se, Te). The electrical transport is modelled using semi-classical Boltzmann transport theory with electronic structures from hybrid density-functional theory, including an approximate model for the electron lifetimes. The lattice thermal conductivity is calculated using first-principles phonon calculations with an explicit treatment of anharmonicity, yielding microscopic insight into how partial replacement of the chalcogen in the bismuth chalcogenides impacts the phonon transport. We find very good agreement between the predicted transport properties and a favourable cancellation of errors that allows for near-quantitative predictions of the thermoelectric figure of merit <italic toggle=\\\"yes\\\">ZT</italic>. Our calculations suggest recent experiments on n-doped Bi<sub>2</sub>SeO<sub>2</sub> have achieved close to the largest <italic toggle=\\\"yes\\\">ZT</italic> possible in bulk materials, whereas the largest reported <italic toggle=\\\"yes\\\">ZT</italic> for Bi<sub>2</sub>TeO<sub>2</sub> could be improved sixfold by optimising the carrier concentration. We also predict that much larger <italic toggle=\\\"yes\\\">ZT</italic> &gt; 2.5, competitive with the benchmark thermoelectric SnSe, could be obtained for Bi<sub>2</sub>SO<sub>2</sub> and Bi<sub>2</sub>SeO<sub>2</sub> with heavy p-type doping. This study demonstrates the predictive power of this modelling approach for studying thermoelectrics and highlights several avenues for improving the performance of the Bi<sub>2</sub>ChO<sub>2</sub>.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"3 6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad2afd\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad2afd","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

我们对氧粲铋化合物 Bi2ChO2(Ch = S、Se、Te)的热电性能进行了详细的理论研究。电传输模型采用半经典玻尔兹曼传输理论,电子结构采用混合密度泛函理论,包括电子寿命的近似模型。晶格热导率的计算采用了第一原理声子计算,并对非谐波性进行了明确的处理,从而从微观上揭示了铬化铋中的部分钙原置换是如何影响声子传输的。我们发现,预测的传输特性与误差的抵消非常一致,从而可以对热电功勋值 ZT 进行近乎定量的预测。我们的计算表明,最近对正掺杂 Bi2SeO2 的实验已经实现了接近块体材料中可能达到的最大 ZT 值,而 Bi2TeO2 的最大 ZT 值可以通过优化载流子浓度提高六倍。我们还预测,Bi2SO2 和 Bi2SeO2 在大量掺杂 p 型载流子的情况下,可以获得比基准热电材料 SnSe 大得多的 ZT > 2.5。这项研究证明了这种建模方法对热电研究的预测能力,并强调了提高 Bi2ChO2 性能的几种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermoelectric properties of the bismuth oxychalcogenides Bi2SO2, Bi2SeO2 and Bi2TeO2
We present a detailed theoretical study of the thermoelectric properties of the bismuth oxychalcogenides Bi2ChO2 (Ch = S, Se, Te). The electrical transport is modelled using semi-classical Boltzmann transport theory with electronic structures from hybrid density-functional theory, including an approximate model for the electron lifetimes. The lattice thermal conductivity is calculated using first-principles phonon calculations with an explicit treatment of anharmonicity, yielding microscopic insight into how partial replacement of the chalcogen in the bismuth chalcogenides impacts the phonon transport. We find very good agreement between the predicted transport properties and a favourable cancellation of errors that allows for near-quantitative predictions of the thermoelectric figure of merit ZT. Our calculations suggest recent experiments on n-doped Bi2SeO2 have achieved close to the largest ZT possible in bulk materials, whereas the largest reported ZT for Bi2TeO2 could be improved sixfold by optimising the carrier concentration. We also predict that much larger ZT > 2.5, competitive with the benchmark thermoelectric SnSe, could be obtained for Bi2SO2 and Bi2SeO2 with heavy p-type doping. This study demonstrates the predictive power of this modelling approach for studying thermoelectrics and highlights several avenues for improving the performance of the Bi2ChO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信