利用波尔钦斯基流量方程构建格罗斯-涅乌模型

Paweł Duch
{"title":"利用波尔钦斯基流量方程构建格罗斯-涅乌模型","authors":"Paweł Duch","doi":"arxiv-2403.18562","DOIUrl":null,"url":null,"abstract":"The Gross-Neveu model is a quantum field theory model of Dirac fermions in\ntwo dimensions with a quartic interaction term. Like Yang-Mills theory in four\ndimensions, the model is renormalizable (but not super-renormalizable) and\nasymptotically free (i.e. its short-distance behaviour is governed by the free\ntheory). We give a new construction of the massive Euclidean Gross-Neveu model\nin infinite volume based on the renormalization group flow equation. The\nconstruction does not involve cluster expansion or discretization of\nphase-space. We express the Schwinger functions of the Gross-Neveu model in\nterms of the effective potential and construct the effective potential by\nsolving the flow equation using the Banach fixed point theorem. Since we use\ncrucially the fact that fermionic fields can be represented as bounded\noperators our construction does not extend to models including bosons. However,\nit is applicable to other asymptotically free purely fermionic theories such as\nthe symplectic fermion model.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Gross-Neveu model using Polchinski flow equation\",\"authors\":\"Paweł Duch\",\"doi\":\"arxiv-2403.18562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gross-Neveu model is a quantum field theory model of Dirac fermions in\\ntwo dimensions with a quartic interaction term. Like Yang-Mills theory in four\\ndimensions, the model is renormalizable (but not super-renormalizable) and\\nasymptotically free (i.e. its short-distance behaviour is governed by the free\\ntheory). We give a new construction of the massive Euclidean Gross-Neveu model\\nin infinite volume based on the renormalization group flow equation. The\\nconstruction does not involve cluster expansion or discretization of\\nphase-space. We express the Schwinger functions of the Gross-Neveu model in\\nterms of the effective potential and construct the effective potential by\\nsolving the flow equation using the Banach fixed point theorem. Since we use\\ncrucially the fact that fermionic fields can be represented as bounded\\noperators our construction does not extend to models including bosons. However,\\nit is applicable to other asymptotically free purely fermionic theories such as\\nthe symplectic fermion model.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

格罗斯-涅维模型是一个具有四次方相互作用项的二维狄拉克费米子量子场论模型。与四维空间的杨-米尔斯理论一样,该模型是可重正化的(但不是超重正化的),而且是渐近自由的(即其短距离行为受自由理论支配)。我们给出了基于重正化群流方程的无限体积大质量欧几里得格罗斯-涅乌模型的新构造。该构造不涉及簇膨胀或相空间离散化。我们用有效势来表达格罗斯-涅维乌模型的施文格函数,并利用巴拿赫定点定理求解流动方程来构造有效势。由于我们利用了费米子场可以表示为有界运算符这一事实,因此我们的构造并不扩展到包括玻色子的模型。然而,它适用于其他渐近自由的纯费米子理论,如交映费米子模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Gross-Neveu model using Polchinski flow equation
The Gross-Neveu model is a quantum field theory model of Dirac fermions in two dimensions with a quartic interaction term. Like Yang-Mills theory in four dimensions, the model is renormalizable (but not super-renormalizable) and asymptotically free (i.e. its short-distance behaviour is governed by the free theory). We give a new construction of the massive Euclidean Gross-Neveu model in infinite volume based on the renormalization group flow equation. The construction does not involve cluster expansion or discretization of phase-space. We express the Schwinger functions of the Gross-Neveu model in terms of the effective potential and construct the effective potential by solving the flow equation using the Banach fixed point theorem. Since we use crucially the fact that fermionic fields can be represented as bounded operators our construction does not extend to models including bosons. However, it is applicable to other asymptotically free purely fermionic theories such as the symplectic fermion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信