复杂费米面上混乱电子轨迹的$τ$--近似的特异性

A. Ya. Maltsev
{"title":"复杂费米面上混乱电子轨迹的$τ$--近似的特异性","authors":"A. Ya. Maltsev","doi":"arxiv-2403.18457","DOIUrl":null,"url":null,"abstract":"The work examines a special behavior of the magnetic conductivity of metals\nthat arises when chaotic electron trajectories appear on the Fermi surface.\nThis behavior is due to the scattering of electrons at singular points of the\ndynamic system describing the dynamics of electrons in $\\, {\\bf p}$-space, and\ncaused by small-angle scattering of electrons on phonons. In this situation,\nthe electronic system is described by a \"non-standard\" relaxation time, which\nplays the main role in a certain range of temperature and magnetic field\nvalues.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specificity of $τ$ -- approximation for chaotic electron trajectories on complex Fermi surfaces\",\"authors\":\"A. Ya. Maltsev\",\"doi\":\"arxiv-2403.18457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work examines a special behavior of the magnetic conductivity of metals\\nthat arises when chaotic electron trajectories appear on the Fermi surface.\\nThis behavior is due to the scattering of electrons at singular points of the\\ndynamic system describing the dynamics of electrons in $\\\\, {\\\\bf p}$-space, and\\ncaused by small-angle scattering of electrons on phonons. In this situation,\\nthe electronic system is described by a \\\"non-standard\\\" relaxation time, which\\nplays the main role in a certain range of temperature and magnetic field\\nvalues.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了当费米表面出现混乱的电子轨迹时金属磁导率的一种特殊行为。这种行为是由于电子在描述$\{\bf p}$空间电子动力学系统奇异点的散射,以及电子对声子的小角度散射引起的。在这种情况下,电子系统由 "非标准 "弛豫时间来描述,它在一定的温度和磁场值范围内发挥着主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specificity of $τ$ -- approximation for chaotic electron trajectories on complex Fermi surfaces
The work examines a special behavior of the magnetic conductivity of metals that arises when chaotic electron trajectories appear on the Fermi surface. This behavior is due to the scattering of electrons at singular points of the dynamic system describing the dynamics of electrons in $\, {\bf p}$-space, and caused by small-angle scattering of electrons on phonons. In this situation, the electronic system is described by a "non-standard" relaxation time, which plays the main role in a certain range of temperature and magnetic field values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信