计算环上可积分涡旋拓扑数的解析方法

Kaoru Miyamoto, Atsushi Nakamula
{"title":"计算环上可积分涡旋拓扑数的解析方法","authors":"Kaoru Miyamoto, Atsushi Nakamula","doi":"arxiv-2403.18264","DOIUrl":null,"url":null,"abstract":"An analytic method to calculate the vortex number on a torus is constructed,\nfocusing on analytic vortex solutions to the Chern-Simons-Higgs theory, whose\ngoverning equation is the so-called Jackiw-Pi equation. The equation is one of\nthe integrable vortex equations and is reduced to Liouville's equation. The\nrequirement of continuity of the Higgs field strongly restricts the\ncharacteristics and the fundamental domain of the vortices. Also considered are\nthe decompactification limits of the vortices on a torus, in which \"flux loss\"\nphenomena occasionally occur.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic Approach for Computation of Topological Number of Integrable Vortex on Torus\",\"authors\":\"Kaoru Miyamoto, Atsushi Nakamula\",\"doi\":\"arxiv-2403.18264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytic method to calculate the vortex number on a torus is constructed,\\nfocusing on analytic vortex solutions to the Chern-Simons-Higgs theory, whose\\ngoverning equation is the so-called Jackiw-Pi equation. The equation is one of\\nthe integrable vortex equations and is reduced to Liouville's equation. The\\nrequirement of continuity of the Higgs field strongly restricts the\\ncharacteristics and the fundamental domain of the vortices. Also considered are\\nthe decompactification limits of the vortices on a torus, in which \\\"flux loss\\\"\\nphenomena occasionally occur.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以 Chern-Simons-Higgs 理论的解析旋涡解为重点,构建了一种计算环上旋涡数的解析方法,而 Chern-Simons-Higgs 理论的指导方程是所谓的 Jackiw-Pi 方程。该方程是可积分涡方程之一,并被简化为柳维尔方程。希格斯场的连续性要求强烈限制了涡旋的特征和基本域。此外,还考虑了旋涡在环上的解压缩极限,其中偶尔会出现 "通量损失 "现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic Approach for Computation of Topological Number of Integrable Vortex on Torus
An analytic method to calculate the vortex number on a torus is constructed, focusing on analytic vortex solutions to the Chern-Simons-Higgs theory, whose governing equation is the so-called Jackiw-Pi equation. The equation is one of the integrable vortex equations and is reduced to Liouville's equation. The requirement of continuity of the Higgs field strongly restricts the characteristics and the fundamental domain of the vortices. Also considered are the decompactification limits of the vortices on a torus, in which "flux loss" phenomena occasionally occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信