手性波色子相互作用理论空间中的流动

Stephen Ebert, Christian Ferko, Cian Luke Martin, Gabriele Tartaglino-Mazzucchelli
{"title":"手性波色子相互作用理论空间中的流动","authors":"Stephen Ebert, Christian Ferko, Cian Luke Martin, Gabriele Tartaglino-Mazzucchelli","doi":"arxiv-2403.18242","DOIUrl":null,"url":null,"abstract":"We study interacting theories of $N$ left-moving and $\\overline{N}$\nright-moving Floreanini-Jackiw bosons in two dimensions. A parameterized family\nof such theories is shown to enjoy (non-manifest) Lorentz invariance if and\nonly if its Lagrangian obeys a flow equation driven by a function of the\nenergy-momentum tensor. We discuss the canonical quantization of such theories\nalong classical stress tensor flows, focusing on the case of the root-$T\n\\overline{T}$ deformation, where we obtain perturbative results for the\ndeformed spectrum in a certain large-momentum limit. In the special case $N =\n\\overline{N}$, we consider the quantum effective action for the root-$T\n\\overline{T}$-deformed theory by expanding around a general classical\nbackground, and we find that the one-loop contribution vanishes for backgrounds\nwith constant scalar gradients. Our analysis can also be interpreted via dual\n$U(1)$ Chern-Simons theories in three dimensions, which might be used to\ndescribe deformations of charged $\\mathrm{AdS}_3$ black holes or quantum Hall\nsystems.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flows in the Space of Interacting Chiral Boson Theories\",\"authors\":\"Stephen Ebert, Christian Ferko, Cian Luke Martin, Gabriele Tartaglino-Mazzucchelli\",\"doi\":\"arxiv-2403.18242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study interacting theories of $N$ left-moving and $\\\\overline{N}$\\nright-moving Floreanini-Jackiw bosons in two dimensions. A parameterized family\\nof such theories is shown to enjoy (non-manifest) Lorentz invariance if and\\nonly if its Lagrangian obeys a flow equation driven by a function of the\\nenergy-momentum tensor. We discuss the canonical quantization of such theories\\nalong classical stress tensor flows, focusing on the case of the root-$T\\n\\\\overline{T}$ deformation, where we obtain perturbative results for the\\ndeformed spectrum in a certain large-momentum limit. In the special case $N =\\n\\\\overline{N}$, we consider the quantum effective action for the root-$T\\n\\\\overline{T}$-deformed theory by expanding around a general classical\\nbackground, and we find that the one-loop contribution vanishes for backgrounds\\nwith constant scalar gradients. Our analysis can also be interpreted via dual\\n$U(1)$ Chern-Simons theories in three dimensions, which might be used to\\ndescribe deformations of charged $\\\\mathrm{AdS}_3$ black holes or quantum Hall\\nsystems.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.18242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了二维中左移的$N$和右移的$\overline{N}$弗洛里亚尼-杰克维玻色子的相互作用理论。研究表明,如果且只有当拉格朗日服从能量-动量张量函数驱动的流方程时,此类理论的参数化族才享有(非显性)洛伦兹不变性。我们讨论了这类理论沿着经典应力张量流的规范量子化,重点讨论了根-$T\overline{T}$ 变形的情况,在此我们得到了在某个大动量极限下变形谱的微扰结果。在$N =\overline{N}$ 的特殊情况下,我们通过围绕一般经典背景展开来考虑根-$T\overline{T}$ 变形理论的量子有效作用。我们的分析也可以通过三维的对偶$U(1)$ Chern-Simons理论来解释,它可以用来描述带电$\mathrm{AdS}_3$黑洞或量子霍尔系统的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flows in the Space of Interacting Chiral Boson Theories
We study interacting theories of $N$ left-moving and $\overline{N}$ right-moving Floreanini-Jackiw bosons in two dimensions. A parameterized family of such theories is shown to enjoy (non-manifest) Lorentz invariance if and only if its Lagrangian obeys a flow equation driven by a function of the energy-momentum tensor. We discuss the canonical quantization of such theories along classical stress tensor flows, focusing on the case of the root-$T \overline{T}$ deformation, where we obtain perturbative results for the deformed spectrum in a certain large-momentum limit. In the special case $N = \overline{N}$, we consider the quantum effective action for the root-$T \overline{T}$-deformed theory by expanding around a general classical background, and we find that the one-loop contribution vanishes for backgrounds with constant scalar gradients. Our analysis can also be interpreted via dual $U(1)$ Chern-Simons theories in three dimensions, which might be used to describe deformations of charged $\mathrm{AdS}_3$ black holes or quantum Hall systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信