分割环上无踪和半无踪矩阵的乘积及其应用

IF 0.5 2区 数学 Q3 MATHEMATICS
Peter V. Danchev, Truong Huu Dung, Tran Nam Son
{"title":"分割环上无踪和半无踪矩阵的乘积及其应用","authors":"Peter V. Danchev, Truong Huu Dung, Tran Nam Son","doi":"10.1142/s0218196724500115","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove that every matrix over a division ring is representable as a product of at most 10 traceless matrices as well as a product of at most four semi-traceless matrices. By applying this result and the obtained so far other results, we show that elements of some algebras possess some rather interesting and nontrivial decompositions into products of images of non-commutative polynomials.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of traceless and semi-traceless matrices over division rings and their applications\",\"authors\":\"Peter V. Danchev, Truong Huu Dung, Tran Nam Son\",\"doi\":\"10.1142/s0218196724500115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove that every matrix over a division ring is representable as a product of at most 10 traceless matrices as well as a product of at most four semi-traceless matrices. By applying this result and the obtained so far other results, we show that elements of some algebras possess some rather interesting and nontrivial decompositions into products of images of non-commutative polynomials.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500115\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500115","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了划分环上的每个矩阵都可以表示为最多 10 个无踪矩阵的乘积,以及最多 4 个半无踪矩阵的乘积。通过应用这一结果和迄今为止获得的其他结果,我们证明了某些代数的元素具有一些相当有趣的非难分解,即分解为非交换多项式的图像的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of traceless and semi-traceless matrices over division rings and their applications

In this paper, we prove that every matrix over a division ring is representable as a product of at most 10 traceless matrices as well as a product of at most four semi-traceless matrices. By applying this result and the obtained so far other results, we show that elements of some algebras possess some rather interesting and nontrivial decompositions into products of images of non-commutative polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信