基于经验实验观察和 MD 模拟数据的纳米/埃格斯管内封闭流体材料特性模型

Ashish Garg, Swati Bishnoi
{"title":"基于经验实验观察和 MD 模拟数据的纳米/埃格斯管内封闭流体材料特性模型","authors":"Ashish Garg, Swati Bishnoi","doi":"10.1088/2632-959x/ad2b83","DOIUrl":null,"url":null,"abstract":"The transport of fluids in nanometer and Angstrom-sized pores has gotten much attention because of its potential uses in nanotechnology, energy storage, and healthcare sectors. Understanding the distinct material properties of fluids in such close confinement is critical for enhancing their performance in various applications. These properties dictate the fluid’s behavior and play a crucial role in determining flow dynamics, transport processes, and, ultimately, the performance of nanoscale devices. Remarkably, many researchers observed that the size of the geometry, such as the diameter of the confining nanotube, exerts a profound and intriguing influence on the material properties of nanoconfined fluids, including on the critical parameters such as density, viscosity, and slip length. Many researchers tried to model these material properties: viscosity <italic toggle=\"yes\">η</italic>, density <italic toggle=\"yes\">ρ</italic>, and slip <italic toggle=\"yes\">λ</italic> using various models with many dependencies on the tube diameter. It is somewhat confusing and tough to decide which model is appropriate and needs to be incorporated in the numerical simulation. In this paper, we tried to propose a simple single equation for each nano confined material property such as for density <inline-formula>\n<tex-math>\n<?CDATA $\\rho {(D)/{\\rho }_{o}=a+b/(D-c)}^{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>ρ</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>D</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:mi>o</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>D</mml:mi><mml:mo>−</mml:mo><mml:mi>c</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"nanoxad2b83ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, viscosity <inline-formula>\n<tex-math>\n<?CDATA $\\eta {(D)/{\\eta }_{o}=a+b/(D-c)}^{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>η</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>D</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>o</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>D</mml:mi><mml:mo>−</mml:mo><mml:mi>c</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"nanoxad2b83ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and the slip length <italic toggle=\"yes\">λ</italic>(<italic toggle=\"yes\">D</italic>) = <italic toggle=\"yes\">λ</italic>\n<sub>1</sub>\n<italic toggle=\"yes\">D</italic>\n<italic toggle=\"yes\">e</italic>\n<sup>−<italic toggle=\"yes\">n</italic>\n<italic toggle=\"yes\">D</italic>\n</sup> + <italic toggle=\"yes\">λ</italic>\n<sub>\n<italic toggle=\"yes\">o</italic>\n</sub> (where <italic toggle=\"yes\">a</italic>, <italic toggle=\"yes\">b</italic>, <italic toggle=\"yes\">c</italic>, <italic toggle=\"yes\">n</italic>, <italic toggle=\"yes\">λ</italic>\n<sub>1</sub>, <italic toggle=\"yes\">λ</italic>\n<sub>\n<italic toggle=\"yes\">o</italic>\n</sub> are the free fitting parameters). We model a wealth of previous experimental and MD simulation data from the literature using our proposed model for each material property of nanoconfined fluids at the nanometer and Angstrom scales. Our single proposed equation effectively captures and models all the data, even though many different models have been employed in the existing literature to describe the same material property. Our proposed model exhibits exceptional agreement with multiple independent datasets from the experimental observations and molecular dynamics simulations. Additionally, the model possesses the advantageous properties of continuity and a continuous derivative, so the proposed model is well-suited for integration into numerical simulations. Further, the proposed models also obey the far boundary conditions, i.e., when tube diameter <italic toggle=\"yes\">D</italic> ⟹ ∞, the material properties tend to the bulk properties of the fluid. Due to the models’ simplicity, smooth, and generic nature, this heuristic model holds promise to apply in simulations to design and optimize nanoscale devices.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An empirical experimental observations and MD simulation data-based model for the material properties of confined fluids in nano/Angstrom size tubes\",\"authors\":\"Ashish Garg, Swati Bishnoi\",\"doi\":\"10.1088/2632-959x/ad2b83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport of fluids in nanometer and Angstrom-sized pores has gotten much attention because of its potential uses in nanotechnology, energy storage, and healthcare sectors. Understanding the distinct material properties of fluids in such close confinement is critical for enhancing their performance in various applications. These properties dictate the fluid’s behavior and play a crucial role in determining flow dynamics, transport processes, and, ultimately, the performance of nanoscale devices. Remarkably, many researchers observed that the size of the geometry, such as the diameter of the confining nanotube, exerts a profound and intriguing influence on the material properties of nanoconfined fluids, including on the critical parameters such as density, viscosity, and slip length. Many researchers tried to model these material properties: viscosity <italic toggle=\\\"yes\\\">η</italic>, density <italic toggle=\\\"yes\\\">ρ</italic>, and slip <italic toggle=\\\"yes\\\">λ</italic> using various models with many dependencies on the tube diameter. It is somewhat confusing and tough to decide which model is appropriate and needs to be incorporated in the numerical simulation. In this paper, we tried to propose a simple single equation for each nano confined material property such as for density <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\rho {(D)/{\\\\rho }_{o}=a+b/(D-c)}^{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>ρ</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>D</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mrow><mml:mo stretchy=\\\"true\\\">/</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:mi>o</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mrow><mml:mo stretchy=\\\"true\\\">/</mml:mo></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>D</mml:mi><mml:mo>−</mml:mo><mml:mi>c</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"nanoxad2b83ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, viscosity <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\eta {(D)/{\\\\eta }_{o}=a+b/(D-c)}^{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>η</mml:mi><mml:msup><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>D</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mrow><mml:mo stretchy=\\\"true\\\">/</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>o</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mrow><mml:mo stretchy=\\\"true\\\">/</mml:mo></mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>D</mml:mi><mml:mo>−</mml:mo><mml:mi>c</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"nanoxad2b83ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, and the slip length <italic toggle=\\\"yes\\\">λ</italic>(<italic toggle=\\\"yes\\\">D</italic>) = <italic toggle=\\\"yes\\\">λ</italic>\\n<sub>1</sub>\\n<italic toggle=\\\"yes\\\">D</italic>\\n<italic toggle=\\\"yes\\\">e</italic>\\n<sup>−<italic toggle=\\\"yes\\\">n</italic>\\n<italic toggle=\\\"yes\\\">D</italic>\\n</sup> + <italic toggle=\\\"yes\\\">λ</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">o</italic>\\n</sub> (where <italic toggle=\\\"yes\\\">a</italic>, <italic toggle=\\\"yes\\\">b</italic>, <italic toggle=\\\"yes\\\">c</italic>, <italic toggle=\\\"yes\\\">n</italic>, <italic toggle=\\\"yes\\\">λ</italic>\\n<sub>1</sub>, <italic toggle=\\\"yes\\\">λ</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">o</italic>\\n</sub> are the free fitting parameters). We model a wealth of previous experimental and MD simulation data from the literature using our proposed model for each material property of nanoconfined fluids at the nanometer and Angstrom scales. Our single proposed equation effectively captures and models all the data, even though many different models have been employed in the existing literature to describe the same material property. Our proposed model exhibits exceptional agreement with multiple independent datasets from the experimental observations and molecular dynamics simulations. Additionally, the model possesses the advantageous properties of continuity and a continuous derivative, so the proposed model is well-suited for integration into numerical simulations. Further, the proposed models also obey the far boundary conditions, i.e., when tube diameter <italic toggle=\\\"yes\\\">D</italic> ⟹ ∞, the material properties tend to the bulk properties of the fluid. Due to the models’ simplicity, smooth, and generic nature, this heuristic model holds promise to apply in simulations to design and optimize nanoscale devices.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad2b83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad2b83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流体在纳米级和埃级孔隙中的传输因其在纳米技术、能量存储和医疗保健领域的潜在用途而备受关注。要想提高流体在各种应用中的性能,了解流体在这种紧密封闭环境中的独特材料特性至关重要。这些特性决定了流体的行为,并在决定流动动力学、传输过程以及最终纳米级设备的性能方面发挥着至关重要的作用。值得注意的是,许多研究人员观察到,几何尺寸(如约束纳米管的直径)对纳米约束流体的材料特性(包括密度、粘度和滑移长度等关键参数)产生了深刻而有趣的影响。许多研究人员尝试使用各种模型来模拟这些材料特性:粘度 η、密度 ρ 和滑移 λ,这些模型与管直径有很多关系。要确定哪种模型是合适的,并将其纳入数值模拟中,有点令人困惑和棘手。在本文中,我们试图为每种纳米约束材料特性提出一个简单的单一方程,如密度 ρ(D)/ρo=a+b/(D-c)n, 粘度 η(D)/ηo=a+b/(D-c)n, 滑移长度 λ(D) = λ1De-nD + λo(其中 a、b、c、n、λ1、λo 为自由拟合参数)。我们针对纳米尺度和埃尺度的纳米约束流体的每种材料特性,使用我们提出的模型对文献中大量先前的实验和 MD 模拟数据进行建模。我们提出的单一方程有效地捕捉并模拟了所有数据,即使现有文献中采用了许多不同的模型来描述相同的材料特性。我们提出的模型与来自实验观测和分子动力学模拟的多个独立数据集非常吻合。此外,该模型还具有连续性和连续导数的优点,因此非常适合集成到数值模拟中。此外,所提出的模型还符合远边界条件,即当管径 D ⟹ ∞ 时,材料特性趋向于流体的体积特性。由于模型简单、平滑、通用,这种启发式模型有望应用于纳米级器件的模拟设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical experimental observations and MD simulation data-based model for the material properties of confined fluids in nano/Angstrom size tubes
The transport of fluids in nanometer and Angstrom-sized pores has gotten much attention because of its potential uses in nanotechnology, energy storage, and healthcare sectors. Understanding the distinct material properties of fluids in such close confinement is critical for enhancing their performance in various applications. These properties dictate the fluid’s behavior and play a crucial role in determining flow dynamics, transport processes, and, ultimately, the performance of nanoscale devices. Remarkably, many researchers observed that the size of the geometry, such as the diameter of the confining nanotube, exerts a profound and intriguing influence on the material properties of nanoconfined fluids, including on the critical parameters such as density, viscosity, and slip length. Many researchers tried to model these material properties: viscosity η, density ρ, and slip λ using various models with many dependencies on the tube diameter. It is somewhat confusing and tough to decide which model is appropriate and needs to be incorporated in the numerical simulation. In this paper, we tried to propose a simple single equation for each nano confined material property such as for density ρ(D)/ρo=a+b/(Dc)n , viscosity η(D)/ηo=a+b/(Dc)n , and the slip length λ(D) = λ 1 D e n D + λ o (where a, b, c, n, λ 1, λ o are the free fitting parameters). We model a wealth of previous experimental and MD simulation data from the literature using our proposed model for each material property of nanoconfined fluids at the nanometer and Angstrom scales. Our single proposed equation effectively captures and models all the data, even though many different models have been employed in the existing literature to describe the same material property. Our proposed model exhibits exceptional agreement with multiple independent datasets from the experimental observations and molecular dynamics simulations. Additionally, the model possesses the advantageous properties of continuity and a continuous derivative, so the proposed model is well-suited for integration into numerical simulations. Further, the proposed models also obey the far boundary conditions, i.e., when tube diameter D ⟹ ∞, the material properties tend to the bulk properties of the fluid. Due to the models’ simplicity, smooth, and generic nature, this heuristic model holds promise to apply in simulations to design and optimize nanoscale devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信