Marcelo João da Silva, Raquel Fogarin Destro, Thiago Gazoni, Patricia Pasquali Parise-Maltempi
{"title":"种间细胞基因组比较揭示了一种潜在的青蛙染色体中心粒标记","authors":"Marcelo João da Silva, Raquel Fogarin Destro, Thiago Gazoni, Patricia Pasquali Parise-Maltempi","doi":"10.1007/s00412-024-00819-9","DOIUrl":null,"url":null,"abstract":"<p>Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in <i>P. boiei</i>, prompted our interest for having a high abundance in <i>P. boiei</i> and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four <i>Proceratophrys</i> species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in <i>Proceratophrys</i> frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four <i>Proceratophrys</i> species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related <i>Proceratophrys</i> species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in <i>Proceratophrys</i> species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interspecific cytogenomic comparison reveals a potential chromosomal centromeric marker in Proceratophrys frog species\",\"authors\":\"Marcelo João da Silva, Raquel Fogarin Destro, Thiago Gazoni, Patricia Pasquali Parise-Maltempi\",\"doi\":\"10.1007/s00412-024-00819-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in <i>P. boiei</i>, prompted our interest for having a high abundance in <i>P. boiei</i> and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four <i>Proceratophrys</i> species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in <i>Proceratophrys</i> frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four <i>Proceratophrys</i> species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related <i>Proceratophrys</i> species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in <i>Proceratophrys</i> species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.</p>\",\"PeriodicalId\":10248,\"journal\":{\"name\":\"Chromosoma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromosoma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00412-024-00819-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosoma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00412-024-00819-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在重复元件中,卫星 DNA(SatDNA)是由高度相似的串联重复单元组成的广泛阵列,长度达数百万个碱基。鉴于 SatDNA PboSat01-176 以前在 P. boiei 中的特征,我们对其在 P. boiei 中的高丰度和作为中心粒卫星的潜力产生了兴趣,在此,我们采用了多种方法,包括低覆盖率基因组测序,然后在四个 Proceratophrys 蛙种中进行计算分析和染色体定位技术,研究其在 Proceratophrys 蛙种中的基因组存在和共享情况及其作为染色体中心粒标记的潜力。我们的研究结果表明,PboSat01-176 在所有四个蛙类物种中都表现出很高的丰度,并显示出明显的特征,使其成为这些物种中最主要的重复 DNA 元件。卫星 DNA 主要集中在染色体的近着丝粒/中心粒区域,尤其是异染色质区域。PboSat01-176 广泛存在于近缘的 Proceratophrys 物种中,这加强了重复序列文库假说的有效性。因此,本研究强调了 satDNA 家族 PboSat01-176 作为 Proceratophrys 物种中可靠的中心粒标记的实用性,并有望应用于其他无尾两栖动物物种。观察到的这一序列在该属内的共享和维持表明了未来研究的可能性,特别是通过扩大取样来阐明库假说的基础参数和 satDNA 序列的进化动态。
Interspecific cytogenomic comparison reveals a potential chromosomal centromeric marker in Proceratophrys frog species
Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.
期刊介绍:
Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more.
The scope of Chromosoma encompasses genetic, biophysical, molecular and cell biological studies.
Average time from receipt of contributions to first decision: 22 days
Publishes research and review articles on the functional organization of the eukaryotic cell nucleus
Topics include structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis and more
Encompasses genetic, biophysical, molecular and cell biological studies.